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Theory of bent-core liquid-crystal phases and phase transitions
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~Received 9 May 2002; published 11 September 2002!

We study phases and phase transitions that can take place in the recently discovered bow-shaped or bent-core
liquid-crystal molecules. We show that to completely characterize phases exhibited by such bent-core mol-
ecules a third-rank tensorTi jk order parameter is necessary in addition to the vector and the nematic~second-
rank! tensor order parameters. We present an exhaustive list of possible liquid phases, characterizing them by
their space-symmetry group and order parameters, and catalog the universality classes of the corresponding
phase transitions that we expect to take place in such bent-core molecular liquid crystals. In addition to the
conventional liquid-crystal phases such as the nematic phase, we predict the existence of other liquid phases,
including the spontaneously chiral nematic (NT12)* and chiral polar (VT12)* phases, the orientationally
ordered but optically isotropic tetrahedraticT phase, and a nematicNT phase withD2d symmetry that is neither
uniaxial nor biaxial. Interestingly, the isotropic-tetrahedratic transition iscontinuousin mean-field theory, but
is likely driven first order by thermal fluctuations. We conclude with a discussion of smectic analogs of these
phases and their experimental signatures.

DOI: 10.1103/PhysRevE.66.031704 PACS number~s!: 64.70.Md
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I. INTRODUCTION

Liquid crystals are extraordinary systems in that they c
tinue to have a revolutionary technological impact and
consistently pose new theoretical challenges of fundame
interest. They exhibit a rich variety of phases with symm
tries intermediate between those of the highest symm
homogeneous isotropic liquid and the lowest-symme
three-dimensional periodic crystal. In contrast to their m
netic and ferroelectricsolid stateanalogs, whose ordering i
driven by energy-entropy competition, liquid-crystal pha
transitions are of predominantly entropic origin. Not unr
lated to this is the fact that, with one exception of the chi
smectic-C* phase @1#, commonly observed liquid-crysta
phases are nonpolar. It is, therefore, not surprising tha
recent experimental discovery by Nioriet al. @2# of ferroelec-
tricity in the liquid-crystal phase ofachiral bent-core
~banana-shaped! molecules has captured the attention of t
liquid-crystal community. Subsequent light microscopy stu
ies by Link et al. @3# elucidated the molecular organizatio
of the newly discovered phase. They convincingly dem
strated that~what came to be known as! the B2 phase@4# is
an antiferroelectric smectic-C phase in which layerssponta-
neously break chiral symmetry~with chirality alternating
from layer to layer! and exhibit polar order in achiral mol
ecules. Eight distinct phases of bent-core molecules, te
tively labeledB1 to B8 have been identified@5,6#, though
most have not been fully characterized. Two of the most w
studied,B2 and B7, are smectic phases consisting of stac
of fluid layers with some internal tilt order, and are spec
because they can be switched with an electric field. A ma
rial composed ofachiral nematogens having a ground sta
that is ferroelectric andhomogeneouslychiral has also re-
cently been discovered@7#. This experimental discovery
opens up a vast new class of achiral molecules that neve
1063-651X/2002/66~3!/031704~27!/$20.00 66 0317
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less exhibit ferroelectricity and are therefore of interest to
liquid-crystal display technology.

While the study of banana-shaped liquid crystals has s
substantial experimental strides@1–3,8#, there has been rela
tively little basic theoretical work on this fascinating ne
class of materials. Brandet al. @9# presented an exhaustive
model-independent classification of the symmetry-allow
smectic phases, and Royet al. @10# introduced a phenomeno
logical Landau model that produces many of the bana
shaped smectic phases. There are also a number of nume
simulations @11–15# on systems of model bent-core mo
ecules that produce nematic phases as well as some o
possible smectic phases. Because so far, experimenta
amples of orientationally ordered but spatially homogene
phasesliquid phases@16# are rare, most of the efforts hav
focused on thesmecticphases of bent-core molecules. He
we will instead focus on spatially homogeneous phas
which we will refer to asliquid phases, the understandin
and classifying of whose phase behavior is in many way
prerequisite to the study of more ordered~e.g., smectic!
phases, which in addition break translational symmetry.
will take advantage of the formal developments and analy
presented in this paper for the liquid phases in our studie
smectic phases, which we defer to a future publication@17#.

The first primary conclusion of our work, which forms th
starting point of all further analysis presented here, is tha
third-rank traceless symmetric tensor order parameterTi jk , in
addition to the usual nematicQi j and vectorpi order param-
eters, is necessary in order to capture the orientational o
observed in experiments on banana-shaped molecules. W
out introducing such an angular momentumL53 order pa-
rameter, only structures which haveat least C2 and mirror
symmetry, such as, e.g., the biaxial nematic can be captu
thereby precluding a first-principles order parameter desc
©2002 The American Physical Society04-1
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tion of, for example, the most interesting spontaneously
deredchiral phases.

As we will demonstrate in great detail, once this high
order order parameterTi jk is introduced, a complex web~dis-
played in Fig. 7! of possible liquid phases emerges and,
sociated with them, a very rich phase behavior. Many
these phases exhibit exotic symmetries summarized in T
I, including D2d , D2, andC2 symmetries@18#, which have
not to our knowledge been previously identified in spatia
uniform ~i.e., liquid! states. These anisotropic liquid phas
are distinguished by the nature of theirTi jk ordering. The
diversity in phase diagram topologies originates from a la
number of symmetry-allowed transition sequences betw
many of the phases that exhibit some nontrivial combinat
of the pi , Qi j , and/or Ti jk order parameters. Some of th
orientationally ordered liquid states that we predict are
spontaneously chiral nematic (NT12)* and chiral polar
(VT12)* phases, an optically isotropic tetrahedraticT
phase, and a nematicNT phase, withD2d symmetry, that is
neither uniaxial nor biaxial, but rather exhibits a fourfo
improper (S4) rotational symmetry about its nematic axis.

The paper is organized as follows. In Sec. II, we prese
model of a banana-shaped liquid-crystal molecule. By c
sidering mass moments of molecules with this shape, we
naturally led to introduce the three important order para
eters,pi , Qi j , andTi jk , that are necessary to fully describ
anisotropic liquid states into which such molecules can m
roscopically order. In Sec. III we then catalog all thermod
namically distinct liquid phases characterizable by th
three order parameters. We organize these phases acco
to symmetry groups under which they are invariant a
present an exhaustive list of phase transition sequence
lowed by symmetry. We construct a Landau theory of

TABLE I. Anisotropic liquid phases of banana-shaped m
ecules, their symmetries in the Schoenflies notation, and their

vanishing order parameters. The notationBW 1,2, etc., is explained in
the text. Some of the phases, such as theN1V phase can be char
acterized by other sets of symmetry equivalent order parame
involving, for example, linear combinations ofp1 and p2 rather
thanp1 alone.

Phase Symmetry Order parameters

V C`v p3 , S, T1

N D`h S
N12 D2h S, BW 1,2

N13 D3h S, TW 2,3

T Td TW 6,7

NT D2d S, TW 6,7

(NT12)* D2 S, B1 , T6 , T7

V12 C2v p3 , S, B1 , T1 , T6;
or p1 , S, B1 , T2 , T4

V13 C3v p3 , S, T1 , TW 2,3

(VT12)* C2 p3 , S, B1 , T1 , T6 , T7;
or p1 , S, B1 , T2 , T4 , T5

N1V C1h p1 , p3 , S, B1 , Q3,
T1 , T2 , T4 , T6
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three order parameters in Sec. IV and analyze the natur
the complicated web of phase transitions that it predicts
Sec. V, finding full consistency with our general grou
theoretic analysis. In Sec. VI, we briefly discuss possi
smectic phases that could result when smectic ordering
velops in the various liquid phases we identify. We conclu
with Sec. VII by summarizing our results and discussi
their relevance to future studies of smectic phases and
experiments.

II. SIMPLE MODEL OF BANANA-SHAPED LIQUID
CRYSTALS: ORDER PARAMETERS

As is clear from a chemically and geometrically accura
model of a bent-core molecule, shown in Fig. 1, the m
notable characteristic of banana-shaped molecules is
‘‘ V’’ shape with bent,~on average! planar and therefore
achiral cores. This shape earned such molecules a n
‘‘bow’’ shaped. The molecule is characterized byC2v sym-
metry, defined by a nonpolar directionn3 ~the ‘‘string’’ of the
bow!, pointing from one endpoint of the ‘‘V’’ to the other
and an orthogonal polar axisn1 ~the bow’s ‘‘arrow’’!, point-
ing to the vertex of the ‘‘V,’’ as illustrated in Fig. 2.

We can, therefore, expect the molecule to be character
by both even- and odd-rank symmetric, traceless tensors
the preferred axis of odd-rank tensors along the moleculan1
axis. We can capture these molecular features by a sim
three-atom rigid bond model of the banana-shaped mole
illustrated in Fig. 2.

As just discussed, associated with each banana-sh
moleculea is a body-fixed orthonormal coordinate syste
with unit vectors (na,1 , na,2 , na,3). MolecularC2v sym-
metry implies invariance under the reflection operatio
na,3→2na,3 and na,2→2na,2 and the p-rotation ~about
na,1) operationna,2→2na,2 , na,3→2na,3 , but not under
the reflectionna,1→2na,1 . In this body-fixed frame, the

FIG. 1. Chemically accurate model of a bent-core~banana-
shaped! NOBOW molecule studied in Refs.@2# and@3# that displays
isotropic, B2 , B4, and crystal~X! phases. Instantaneously, a mo
ecule can be found in a chiral nonplanar configuration~as shown on
the right!, but fluctuates equally between positive and negat
chiralities, on average is planar and therefore achiral.
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three atoms’ coordinates are given by

Ra,15~a cosb!na,1 , ~2.1a!

Ra,252~a sinb!na,3 , ~2.1b!

Ra,35~a sinb!na,3 , ~2.1c!

where 2b'120 ° is the opening angle of the ‘‘V’’ @15#, as
shown in Fig. 2, and with the origin located on thena,3 axis,
half way betweenm masses. As is the case for standard ne
atogens where transitions are driven by entropic interactio
we expect that the dominant ordering mechanisms
banana-shaped liquid crystals will be associated with
shape of the molecule and not with electric dipoles. W
therefore, focus on the mass-moment tensors as the im
tant order parameters for this problem. That is, through
the paper we will assume that the liquid-crystal ordering
driven by steric interactions and, therefore, that it is
mass-moment tensors, rather than charge moments, that
the primary critical order parameters.

The lowest order mass moment is just the center of m
given, in terms of the body-fixed coordinate system, by

Rcm
a 5

1

2m1m1
(
m51

3

mmRam
~2.2a!

5S m1

2m1m1
a cosb Dna,1 . ~2.2b!

It is natural to define mass moments relative to the cente
mass coordinateRcm

a . Positions of atomm relative to the
center of mass are thenra,m5Ra,m2Rcm

a . The second mass
moment tensor relative to the center of mass can be dec
posed into a scalar~proportional tod i j ) and a symmetric,
traceless tensor

C2,a
i j 5 (

m51

3

mmS r a,m
i r a,m

j 2
1

3
r a,m

2 d i j D . ~2.3!

The third mass-moment tensor can be decomposed in
vector part,

FIG. 2. A simple three-atom model of a banana-shaped m
ecule and a body-fixed orthonormal coordinate system, captu
the molecule’s characteristic, achiralC2v symmetry.
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C1,a
i 5 (

m51

3

mmr a,m
2 r a,m

i ~2.4!

and a third-rank symmetric, traceless tensor

C3,a
i jk 5 (

m51

3

mm@r a,m
i r a,m

j r a,m
k ~2.5!

2 1
5 r a,m

2 ~d i j r a,m
k 1d jkr a,m

i 1dkir a,m
j !].

~2.6!

These mass-moment tensors can be expanded in term
complete sets of tensors of the appropriate rank formed f
the vectorsna,1 , na,2 , andna,3 ,

C1,a
i 5c1na,1

i , ~2.7a!

C2,a
i j 5c23Qa,3

i j 1c22~Qa,1
i j 2Qa,2

i j !, ~2.7b!

C3,a
i jk 5c31Ta,1

i jk 1c32Ta,2
i jk , ~2.7c!

where

Qa,a
i j 5na,a

i na,a
j 2

1

3
d i j , a51,2,3, ~2.8!

Ta,1
i jk 5na,1

i na,1
j na,1

k 2
1

5
~d i j na,1

k 1d jkna,1
i 1dkina,1

j !,

~2.9a!

Ta,2
i jk 5na,3

i na,3
j na,1

k 1na,3
i na,1

j na,3
k 1na,1

i na,3
j na,3

k

2
1

5
~d i j na,1

k 1d jkna,1
i 1dkina,1

j !, ~2.9b!

and

c15
2mm1a3 cosb~2m112m cos 2b!

~2m1m1!2 , ~2.10a!

c2352ma2 sin2b2
mm1

2m1m1
a2 cos2b,

~2.10b!

c225
mm1

2m1m1
a2 cos2b, ~2.10c!

c315
2mm1~m1

214m2!

~2m1m1!3 a3 cos3b, ~2.10d!

c325
4m2m1

2m1m1
a3 sin2b cosb. ~2.10e!

There are only two independent symmetric-traceless mole
lar parameters in the setQa,a

i j because the completeness r
lation,

(
a51

3

na
i na

j 5d i j , ~2.11!

l-
g
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implies the constraint

(
a51

3

Qa,a
i j 50. ~2.12!

For arbitrary orientation of the axesna,a , a given molecule
will in general exhibit five independent symmetric-tracele
tensor mass moments. However, because we have ch
these axes to be symmetry axes of the molecule, there
only two independent tensors. Similarly, a given molec
will in general be characterized by seven independent th
rank mass-moment tensors. By utilizing three rotational
grees of freedom~e.g., Euler’s angles! it is always possible
to choose the axesna,a so that there are only four indepen
dent such tensors. Our model of a bent-core molecule is
ficiently simple, that, with our convenient choice of bas
vectors na,a , each molecule is characterized by only tw
nonvanishing third-rank tensors.

The potential energy of interacting bent-core molecu
can be expressed in terms of the generalized tensorsna,1

i ,
Qa,a

i j , andTa,a
i jk and higher-rank tensors. In the phenomen

logical treatment we will pursue, it is convenient to introdu
coarse-grained field versions of these tensors,

pi~x!5
1

r (
a

na,1
i d~x2xa!, ~2.13a!

Qa
i j ~x!5

1

r (
a

Qa,a
i j d~x2xa!, ~2.13b!

Ta
i jk~x!5

1

r (
a

Ta,a
i jk d~x2xa!, ~2.13c!

where xa is the position in the lab frame of the center
mass of moleculea andr is the molecular number density
Thus, a theory for our model bent-core molecules that
cludes all tensor order parameters up to those of third r
would include a single vector order parameter derived fr
the third-rank mass-moment tensor, two second-rank tens
and two third-rank tensors. To simplify our discussion,
will consider phenomenological theories with only o
second-rank tensor, which we denoteQi j , and one third-rank
tensor, which we denoteTi jk . This, however, is not a restric
tion on our model, because if the original theory had all fo
second- and third-rank tensors, we could, for example, in
grate outQ2

i j andT1
i jk order parameters to obtain our mod

as an effective theory, depending only onpi , Qi j [Q3
i j , and

Ti jk[T2
i jk order parameters.

Each of these tensors can be expressed in terms o
components relative to a space-fixed orthonormal b
(n1 ,n2 ,n3)[(m,l,n), with m3 l5n. To this end, we intro-
duce second- and third-rank symmetric-traceless ortho
mal basis tensors,Jm

i j and I m
i jk , that transform, respectively

underL52 andL53 representations of the rotation group
three dimensions,

J1
i j 5A3/2S ninj2

1

3
d i j D , ~2.14a!
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J2
i j 5A1/2~mimj2 l i l j !, ~2.14b!

J3
i j 5A1/2~nimj1minj !, ~2.14c!

J4
i j 5A1/2~ni l j1 l inj !, ~2.14d!

J5
i j 5A1/2~mil j1 l imj !, ~2.14e!

and

I 1
i jk5A5/2Fninjnk2

1

5
~d i j nk1d jkni1dkinj !G , ~2.15a!

I 2
i jk5

1

2
~mimjmk2mil j l k2mjl kl i2mkl i l j !,

~2.15b!

I 3
i jk5

1

2
~ l i l j l k2 l imjmk2 l jmkmi2 l kmimj !, ~2.15c!

I 4
i jk5A5/12Fminjnk1mjnkni1mkninj

2
1

5
~mid jk1mjd ik1mkd i j !G , ~2.15d!

I 5
i jk5A5/12F l injnk1 l jnkni1 l kninj

2
1

5
~ l id jk1 l jd ik1 l kd i j !G , ~2.15e!

I 6
i jk5

1

A6
@ni~mjmk2 l j l k!1nj~mimk2 l i l k!

1nk~mimj2 l i l j !#, ~2.15f!

I 7
i jk5

1

A6
~nimj l k1ni l jmk1mil jnk1minj l k

1 l injmk1 l imjnk!. ~2.15g!

These tensors are normalized so that

(
i j

Jm
i j Jm8

i j
5dm,m8 , ~2.16a!

(
i jk

I m
i jk I m8

i jk
5dm,m8 . ~2.16b!

We can now express our order parameters fields, Eq.~2.13!,
in terms of these bases

pi5(
m

pmnm
i , ~2.17a!

Qi j 5(
m

QmJm
i j , ~2.17b!
4-4
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Ti jk5(
m

TmI m
i jk . ~2.17c!

The space-fixed orthonormal basis (m,l,n) can be rotated
to diagonalize the tensorspi , Qi j , andTi jk . In general, there
is no reason why the rotated bases of these three orde
rameters should coincide. We should, therefore, in gen
introduce three bases (mA ,lA ,nA) whereAP$p,Q,T%. Any
of these bases are fully specified by three angles, and we
choose them to eliminate up to three components of the
sorsQi j andTi jk . In particular, we can choose the two ind
pendent angles innQ to eliminateQ3 andQ4. This leads to

Qi j 5SS nQ
i nQ

j 2
1

3
d i j D1B1~mQ

i mQ
j 2 l Q

i l Q
j !

1B2~mQ
i l Q

j 1 l Q
i mQ

j !. ~2.18!

The independent angle defining the direction of the p
(mQ ,lQ) can be used to eliminate eitherB1 or B2. A similar
line of arguments allows us to choose the basis (mT ,lT ,nT)
so thatT35T45T550. We can parametrize the four remai
ing components ofTi jk in terms of an amplitudeT and three
angles,u1 , u2, andu3 and write

Ti jk5T~cosu1I 1
i jk1sinu1 cosu2I 2

i jk1sinu1 sinu2 cosu3I 6
i jk

1sinu1 sinu2 sinu3I 7
i jk !, ~2.19!

in the basis (mT ,lT ,nT). There are other representations
the general tensorTi jk involving other sets of four of the
tensorsI m

i jk and a different set of three angles. The repres
tation of Eq.~2.19! is the most useful for our purposes. F
nally, we can choose thep basis so that

p5pnp . ~2.20!

In what follows, we will, unless otherwise specified, expre
all quantities in the basis (mQ ,lQ ,nQ)[(m,l,n) that diago-
nalizesQi j with B250. We will then have to worry about th
possibility of seven independent components ofTi jk and
three independent components ofpi in this basis rather than
the angles of theT and p bases relative to those of theQ
basis. WhenQi j is zero, we can of course choose thep or the
T basis.

III. PHASES AND THEIR SYMMETRIES

We have just seen that phases of banana-shaped
ecules can be characterized by vector and second- and t
rank tensor order parameters. Before developing a Lan
field theory for these order parameters and analyzing i
mean-field theory, we summarize in this section the vari
phases and their symmetries that can arise from these o
parameters, and we review possible phase sequences
duced by the simplest version of the Landau theory.

Before cataloging the possible phases of our model
their symmetries, we observe that many of these phases
be successfully described in terms of effective theories
are functions of only one of the order parameterspi , Qi j , or
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Ti jk . Some of the phases, however, particularly those
lower symmetry, require two or more of these order para
eters for their full description. Furthermore, these order
rameters are coupled by rotationally invariant contributio
to the free energy likepipjQi j , Qi j TiklTjkl , or piQjkTi jk , and
the existence of one kind of order induces another. Thus,
example, a model based onTi jk alone would miss the fac
that the lower-rank tensorQi j is automatically induced byT2

order.
Table I lists the phases we consider, their symmetries,

the nonvanishing order parameters that characterize th
This list includes phases with all symmetries that can
constructed from the order parameterspi , Qi j , andTi jk ex-
cept for the lowest-symmetry phase withC1 symmetry
@33,34#, which we do not consider. All other point-grou
symmetries including cubic, icosahedral, simple tetrahed
(T), and even lower symmetries such asS2 , C3, and C2h

cannot be characterized without the introduction of fourth-
higher-rank tensor order parameters. As is customary, we
note the isotropic phase byI and the nematic phase byN.
The N phase hasD`h symmetry, and it is completely char
acterized within the space ofpi , Qi j , andTi jk by the single
uniaxial order parameterS. In general, theN phase will also
have nonvanishing components of all even rank tensors@ex-
plicitly induced through Tr(QnT2n) coupling#, but we will
ignore them, focusing on the nontrivial order parameters
rank 3 or less that actually drive the ordering transitio
There is a phase with vector or, equivalently,C`v symmetry,
which we denote byV. The predominant order parameter
this phase is the vectorp, which we take to be alongn ~i.e.,
nonzerop3). Oncep3 orders, it explicitly inducesS andT1
order parameters, through thepipj pkTi jk and pipjQi j cou-
plings, respectively.

There are a number of phases in which anisotropy de
ops in the plane perpendicular ton or p. As we will find in
Sec. V, phases that break uniaxial symmetry~isotropy of the
transverse plane!, will exhibit O(2) invariance correspond
ing to internal rotation within pairs of order paramete
For convenience, we will collectively refer to these pa
as: pW 1,2[( p1 , p 2), BW 1,2[(B1 ,B2), TW 2,3[(T2 ,T3), TW 4,5

[(T4 ,T5), TW 6,7[(T6 ,T7). Also, following Toner @19#, we
denote the phases withr-fold anisotropy ~or equivalently
r-atic order! in the plane perpendicular ton by N1r and
those with similar anisotropy perpendicular to the vector a
p by V1r . There is the standard biaxial nematic orN12
phase withD2h symmetry andS andBW 1,2 order. There is an
N13 phase withD3h symmetry and nonvanishingSandTW 2,3
order. TheV12 ~equivalent to theN11 phase! and V13
phases haveC2v and C3v symmetry, respectively. TheV
13 phase develops from theN13 phase by developing vec
tor order along then axis. It, therefore, hasp3 andT1 order
in addition to theS and TW 2,3 order of theN13 phase. The
V12 phase has one twofold axis and two perpendicular
flection planes. Which order parameters describe this ph
depends on whether the vector orderp lies alongn ~which
diagonalizesQi j ) or perpendicular ton, within them-l plane.
If p is parallel to n, the V12 phase is characterized b
4-5
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nonvanishingp3 , S, B1 , T1, and T6 or by a symmetry
equivalent set such asp3 , S, B2 , T1, and T7, where it is
understood here thatT7 is zero if B1 is nonzero andT6 is
zero if B2 is nonzero~otherwise spontaneous chirality deve
ops, as discussed below!; if p is perpendicular ton, then it is
characterized by nonvanishingpW 1,2, S, B1 , T2, and T4 or
symmetry-equivalent order parameters.

Schematic representations of theN, N12, N13, V, and
V12 phases derived from bent-core molecules are show
Fig. 3. The distribution of molecular angles in theV13
phase is difficult to depict in the format of Fig. 3. Because
the symmetry of the bent-core molecule undern3→2n3, it

FIG. 3. Schematic representations of theN, N12, N13, V, and
V12 phases. Three versions,~a!, ~b!, and~c!, of the N phases are
depicted with respective predominant alignment ofn3 , n1 , andn2

along n, specifying the direction of the principal axis ofQi j with
the largest eigenvalue. TheN12 phases,~d!, ~e!, and ~f!, are ob-
tained, respectively, from theN phases~a!, ~b!, and~c! by restricting
rotations in the plane perpendicular ton to have twofold symmetry,
whereas theN13 phases,~g! and ~h!, are obtained by restricting
these rotations to have a threefold symmetry. In the uniaxiaV
phase~i!, the molecularn1 aligns on average alongpuun, sampling
equally all orientations about thep axis. TheV12 phase can be
produced either by introducing biaxial order perpendicular top and
n into the V phase~j! or by introducing vector order into theN
12 phase by aligningp alongm ~k!.
03170
in

f

is impossible to produceV13 symmetry if the molecularn1

axis is rigidly aligned alongp. To produce such threefold
symmetry, it is necessary for the molecularn1 axis to be
tilted away from the thep axis and for its projection onto the
plane perpendicular top to have threefold symmetry.

A comment about howTW 2,3 order describesN13 ~andV
13) symmetry is useful.r-atic order is generally describe
by an order parameter of the form̂eir f&, wheref is the
angle between a molecular axis in them-l plane and them
axis. To representTW 2,3 order in this way, we introduce the
circular basis vectors,

e65
1

A2
~m6 i l!, ~3.1!

( i 5A21) satisfying

e1•e251, e1•e150, e2•e250, ~3.2!

and reexpressI 2
i jk and I 3

i jk as

I 2
i jk5

1

A2
~ I 1

i jk1I 2
i jk !, I 3

i jk5
2 i

A2
~ I 1

i jk2I 2
i jk !. ~3.3!

ThenT2I 2
i jk1T3I 3

i jk5T1I 1
i jk1T2I 2

i jk , where

T65
1

A2
~T27 iT3!5e6

i e6
j e6

k Ti jk . ~3.4!

If n3 is aligned alongn, thenT65^e6 i3f&, wheref is the
angle betweenn1 andm. Whenn3 is not aligned alongn, the
situation is similar, though more complicated. Thus, nonz
TW 2,3 describestriadic order in the plane perpendicular ton.
We will also briefly encounter even lower symmetry phas
in which, in contrast to theN1r andV1r phases discusse
above, the additional order develops in a plane that isnot
perpendicular to the established nematic or vector axis. O
prominent example is a phase in which the nematic and p
orders are neither parallel nor perpendicular. We will refer
this C1h-symmetry phase asN1V, emphasizing its distinc-
tion from theN11 ([V12) phase, discussed above. A
thoughN1V phase~and itsN1r 1V analogs! is quite un-
likely to develop in the liquid state, such order can qu
naturally appear in the smectic-C environment, where the
additional axis is defined by the smectic layer-normalN.

There is only one phase in whichTi jk has a nonvanishing
component and in whichboth pi and Qi j are zero. This
phase, which we denote byT and call tetrahedratic, has te
rahedral symmetry and is invariant under all 24 operations
the tetrahedral groupTd @18#. It is characterized by an arbi
trary nonvanishing linear combination ofT6 andT7, i.e., by
the TW 6,7 order parameter, and is illustrated in Figs. 4~a! and
5~a!.

A uniaxial distortion along one of the three twofold tetr
hedral axes reduces theTd symmetry of the tetrahedrati
phase down toD2d symmetry. We denote the resultingnon-
polar phase with this symmetry byNT . It is characterized by
nonvanishing nematicS and TW 6,7 order parameters, but it is
4-6
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neither a uniaxial nor a biaxial nematic, withTW 6,7 breaking
the isotropy of the plane transverse ton, as illustrated in
Figs. 4~b!, 5~b!, and 6~a!.

The V12 phase withC2v symmetry naturally emerge
from theNT phase through the development of longitudin
polar orderp5p3n along the existing nematic axis. As w
will see in Sec. V, oncep3 develops in the presence ofTW 6,7,
a biaxial orderBW 1,2 with principal axesparallel to those of
TW 6,7

i jkni is explicitly induced. Our final two phases, which w
denote by (NT12)* and (VT12)* , respectively, haveD2
and C2 symmetry. They are unique in that they are spon
neouslychiral phases. Thenonpolar chiral(NT12)* phase
depicted in Figs. 5~c! and 6~b! is formed from the nonpola
achiral NT phase by the development of biaxialBW 1,2 order
~but in contrast to the polar achiralV12 phase! with princi-
pal axesrotated exactlyby p/4 relative to those of theTW 6,7

i jkni

order parameter, which characterizes theNT phase. More
concretely, for the choice of the basism-l, such thatNT is
exclusivelydescribed by nonvanishingSandT7 order param-
eters, the polar achiralV12 and the nonpolar chiral (NT
12)* phases emerge whenB2 and B1, respectively, order;
equivalently, if it is the nonzeroSandT6 that areexclusively
used to describe theNT phase, then the roles ofB2 andB1
are reversed and transitions toV12 and (NT12)* take
place whenB1 and B2, respectively, become nonzero. Th
polar chiral (VT12)* phase emerges from the nonpolar c
ral (NT12)* phase via development of polar orderp3 along
the existing nematicn axis.

Alternatively, a transition to it can also take place fro
the polar achiralV12 phase by spontaneously breaking c
ral symmetry via development of biaxialBW 1,2 order with
principal axesrotated exactlyby p/4 from those ofTW 6,7

i jkni

order parameter. Not surprisingly, in all the polar phases
T1 order parameter is also explicitly induced. Since both

FIG. 4. ~a! A tetrahedron that exhibits symmetry identical to th
of the tetrahedraticT phase, with all three axes of the cube,n,m,l
equivalent. TheT phase can be visualized as being composed
banana-shaped molecule tetrahedral complexes on average de
ing edges of randomly positioned but orientationally ordered te
hedra as shown in Fig. 5~a!. ~b! A tetrahedron uniaxially distorted
along then axis, exhibiting symmetry of theNT phase, that is
distinguished from theT phase by the nonzero nematic order p
rameterS. A depiction of this phase in terms of banana-shap
molecules is shown in Fig. 5~b!
03170
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(NT12)* and (VT12)* phases are chiral, their ground-sta
configurations will exhibit spatial modulations like those
cholesteric and blue phases of chiral mesogens.

Given theachirality of the bent-core molecules, the tran
sitions from NT to (NT12)* and V12 to (VT12)* are
ones in which chiral symmetry is brokenspontaneously, and
they are, therefore, relevant to the physics of chiral bana
shaped phases@3#. Figure 7 summarizes the phases we tr
and the symmetry-lowering transitions among them thatcan
take place, i.e., allowed by symmetry~as opposed to ener
getic! considerations. The fact thatC2v is a subgroup of
C`v (C2v,C`v) implies that there can be aV→V12
symmetry-lowering transition. The subgroup structu
D2,D2d,Td,O(3) and C2v,D3h,O(3), whereO(3) is
the full orthogonal group including inversions in three d
mensions, imply, respectively, that theI→T→NT→(NT
12)* and I→N13→V12 phase sequences are possib
Other phase sequences shown in Fig. 7 follow from sim
group-theoretic arguments, and are supported by the deta
analysis of the Landau mean-field theory given in Sec. V

IV. CONSTRUCTION OF A LANDAU FIELD THEORY

Having identified the possible spatially homogeneous
anisotropic phases@20# of systems described by first-

f
rat-
-

-
d

FIG. 5. Schematic representation in terms of banana-sha
molecules of~a! the T phase,~b! the NT phase, and~c! the (NT

12)* phase. In theT phase, bent-core molecules align locally wi
their n3 axes aligned on average along the six edges of a tetrahe
and theirn1 axes aligned parallel to the normals6m, 6 l, and6n
to these edges. Opposite edges are~say with normals alongn and
2n) orthogonal so that molecules aligned along opposite ed
have perpendicularn3 axes. TheNT phase is obtained from theT
phase by a uniaxial distortion along one of the cubic axes as sh
in Fig. 4 to favor one pair of crossed bent-core molecules over
other two orthogonal pairs. Note the invariance of theNT phase
under the fourfold improper rotationS4 :m→ l,l→2m,n→2n.
The chiral nonpolar (NT12)* phase is obtained from theNT phase
by rotating the two molecular planes away from 90 ° to an an
0,d,p/2 to remove theS4 symmetry element, as also illustrate
in Fig. 6.
4-7
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second-, and third-rank tensor order parameters, we now
to the study of phase transitions among them. To this end
begin by constructing a Landau free energy that will descr
transitions from the isotropic phase. The appropriate Lan
free energy functional is a rotationally invariant power-ser
expansion in the order parameterspi , Qi j , andTi jk . The most
general Landau free-energy density is produced by sum
scalars formed from the tensorspi , Qi j , andTi jk . It can be
decomposed as

f 5 f p1 f Q1 f T1 f pQ1 f pT1 f QT1 f pQT1 f Q2T2, ~4.1!

where f p , f Q , f T are, respectively, the Landau energi
for independent vector, second-rank, and third-rank ten
order parameters and the other energies are couplings
tween these order parameters. The vector energyf p is given
by the standard O(N53) model,

f p5 1
2 Kp~] j p

i !~] j p
i !1 1

2 r ppipi1up~pipi !2. ~4.2!

FIG. 6. Various representations of the achiralNT ~a! and the
chiral (NT12)* ~b! phases. The two phases are distinguished
their opening angled. In the achiralNT phase,d5p/2, whereas in
the chiral (NT12)* phase, 0,d,p/2.
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The purely second-rank tensor part off is the well-known
Landau energy for isotropic-nematic transition@21,22#, given
by

f Q5 1
2 KQ~]kQ

i j ]kQ
i j !1 1

2 r QQi j Qi j 2wQQi j QjkQki

1uQ~Qi j Qi j !2, ~4.3!

and the purely third-rank-tensor part off is given by

f T5 1
2 KT~] lT

i jk] lT
i jk !1 1

2 r TTi jkTi jk1uT~Ti jkTi jk !2

1vTTi 1i 2i 3Ti 1i 4i 5Ti 2i 4i 6Ti 3i 5i 6. ~4.4!

In the above expressions we have suppressed the pos
dependence of order parameters, have used an Einstein
vention for the repeated indices, and have left out the di
larlike ~‘‘space-spin’’ coupling! gradient terms,] iQ

ik] jQ
jk,

and ] i 1
Ti 1 jk] i 2

Ti 2 jk, that couple internal indices ofQi j and

Ti jk to that of the spatial coordinatex. Although this last
simplification might modify the asymptotic nature of th
phase transitions, it obviously willnot affect our mean-field
discussions, valid outside of a~typically! narrow critical re-
gion. The parametersr p;T2Tp , r Q;T2TQ , and r T;T
2TT vanish at the temperaturesTp , TQ , andTT , which are
determined predominantly by the interaction potential b
tween molecules, that characterize mean-field limits of me

y

FIG. 7. A flowchart of phase transitions between liquid-crys
phases illustrated in Fig. 3. Order parameters, which become
zero at each of the transitions and their symmetry groups are i
cated. For transitions that we have studied in detail, we have
indicated the secondary~explicitly induced by nonlinear couplings!
order parameters by placing them in parentheses.
4-8
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stability. In writing down quartic nonlinearities inf Q and f T ,
we have used the nonobvious relations~valid in three dimen-
sions!

1

2
~Qi j Qji !25Qi j QjkQklQli , ~4.5a!

1

2
~Ti jkTi jk !25Ti j 1k1Tl j 1k1Ti j 2k2Tl j 2k2

1Ti 1i 2i 3Ti 1i 4i 5Ti 2i 4i 6Ti 3i 5i 6, ~4.5b!

to reduce the number of quartic couplings inf Q from two to
one and inf T from three to two. The lowest-order contribu
tions to the coupling energies are

f pQ52wpQpipjQi j , ~4.6a!

f pT52wpTpipj pkTi jk , ~4.6b!

f QT52wQTQi 1i 2Ti 1 jkTi 2 jk, ~4.6c!

f pQT52wpQTp
iQjkTi jk , ~4.6d!

f Q2T2
(1)

52w1Qi 1lQi 2lTi 1 jkTi 2 jk, ~4.6e!

f Q2T2
(2)

52w2Qi 1 j 1Qi 2 j 2Ti 1 j 1kTi 2 j 2k, ~4.6f!

f Q2T2
(3)

52w3Qi 1i 2Qj 1 j 2Ti 1 j 1kTi 2 j 2k, ~4.6g!

where we have decomposedf Q2T2 as (n51
3 f Q2T2

(n) . The term
piQjkTi jk deserves special attention. If the productQjkTi jk is
nonzero this term will induce vectorpi order. Thus, it is
possible to have a transition from theN phase that appears t
be driven byTi jk but which nonetheless develops vector o
der. In other words, a model expressed in terms ofQi j and
Ti jk , only, would miss the development of vector ord
which by itself is unlikely to order in a realistic liquid crys
tal.

As usual, the average properties are computed by integ
ing over order parameter configurations with a Boltzma
weight with an effective HamiltonianH5*d3x f ,

^O&5
1

ZE DpiDQi j DTi jkO~pi ,Qi j ,Ti jk !e2H/kBT,

~4.7!

whereO(pi ,Qi j ,Ti jk) is a function of the order paramete
pi , Qi j , andTi jk andZ is the partition function.

V. PHASE TRANSITIONS

In the preceding two sections, we defined order para
eters, identified possible rotationally anisotropic, but s
tially homogeneous thermodynamic phases of bent-core m
ecules, and constructed a Landau theory to describe p
transitions among these phases. In this section, we will s
how each of the phase transition sequences depicted in F
arises in mean-field theory. We will organize our discuss
by considering sequentially each symmetry-lowering tran
03170
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tion from each of the phases in Fig. 7. Thus, we will fir
discuss transitions from theI phase to theV, N, N13, andT
phases. We will then study transitions from each of the
phases, that is, from theV, N, N13, andT phases into lower-
symmetry phases and so on until the lowest-symmetryV
13, (VT12)* , andN1V phases are reached.

In our discussion of transitions out of various partia
ordered phases, it will be useful to display explicitly the p
of the free energy functionalf that couples the order param
eterspi , Qi j , andTi jk , which identify our phases. This cou
pling energy part, which we collectively callf c , arises from
the Q3 and Q4 parts of f Q , from the T4 parts of f T , and
from f pQ , f pT , f QT , f pQT , f Q2T2

(1) , f Q2T2
(2) , and f Q2T2

(3) . It de-
termines those order parameters that are coupled at harm
order when long-range order has been established in a su
of order parameters, and it is, therefore, essential in es
lishing the nature of the phases and phase diagrams for
system.

A. Transitions from the isotropic phase

The isotropic phase is the phase with the highest@O(3)#
symmetry. A symmetry-lowering transition to theV phase
with vector symmetry takes place with the development op
order and one to theN phase with the development o
uniaxial Qi j order. As Figs. 7 and 12 indicate, the develo
ment of Ti jk order in the isotropic phaseI, can lead to two
distinct phases: the tetrahedral phaseT with TW 6,7 order and
the N13 phase with uniaxialQi j order in addition toTW 2,3
order. At long length scales, small fluctuations within t
isotropic phase are described by a harmonic free ene
density

f̃ (I )5 1
2 ~r ppipi1r QQi j Qi j 1r TTi jkTi jk !. ~5.1!

Thus, which of the fieldspi , Qi j , or Ti jk first becomes un-
stable is determined by which of the set of parametersSI
5$r p ,r Q ,r T% first passes through zero. Some of the tran
tions from theI phase are, however, first order, and which
the possible transitions actually takes place depends
higher-order terms in the free energy. We will thus consid
each transition separately.

1. I\V transition

FIG. 8. A schematic representation of theI→V transition.
4-9



n
a

th

n

an

e

f
e
e

-

ive
n
y

y in
-

i-
sor,

the
iso-

-

ur-

er-

t to

a-

es

T. C. LUBENSKY AND LEO RADZIHOVSKY PHYSICAL REVIEW E66, 031704 ~2002!
The I→V transition is driven by the development ofp
order. Sincep is a vector, this transition is in the well-know
O(3) universality class; it can be described in terms of
effective theory involving p only ~Fig. 8!. Below this
second-order transition, we can takep to point along the 3
direction with

p3;ur p2r pcubO(3), ~5.2!

andbO(3)'0.366, wherer pc is the value ofr p at the critical
point. Oncep develops, it drives bothSandT1 order via the
interactions

f pQ52
2

3
wpQp3

2S, ~5.3!

f pT52A2

5
wpQTp3

3T1 , ~5.4!

so that in mean-field theory@24#

S;ur p2r pcu2bO(3), ~5.5a!

T1;ur p2r pcu3bO(3), ~5.5b!

for r p,r pc in the V phase.

2. I\N transition

The I→N transition is driven by the development ofQi j

order from the isotropic phase. There are no couplings
explicitly drive eitherpi or Ti jk order onceQi j order devel-
ops ~Fig. 9!. Consequently, this well-studied transitio
@21,22#, which is described completely by thef Q part of the
free energy density, is generically first order and in me
field theory takes place atr Q5wQ

2 /12uQ . A direct transition
from the isotropic to the biaxial nematic (N12) phase is
also possible. Since it is fairly complicated and has be
treated in detail@23#, we will not consider it further here.

3. Transitions from I driven by Tijk

Transitions from theI phase involving the development o
third-rank tensor@26,27# order are more complex than th
other transitions from theI phase we have considered. Th
many degrees of freedom in theTi jk tensor lead to the pos

FIG. 9. A schematic representation of theI→N transition.
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sibility of two distinct transitions, theI→T and theI→N
13 transition@27#. Since it is fluctuations inTi jk that drive
these transitions, the noncritical degrees of freedom,pi and
Qi j can safely be integrated out to produce an effect
theory involving onlyTi jk whose free energy is identical i
form to Eq.~4.4!. This is the energy that we will use to stud
transitions from theI phase involvingTi jk order. We will,
however, have cause to return to the more general theor
our discussion of theI→N13 transition. There are two im
portant things to note about the free energyf T in Eq. ~4.4!.
First, in contrast tof Q , this energy has no odd-order invar
ants because none can be formed with a third-rank ten
Ti jk . Second, there are two fourth order invariants@27#,
which as we shall see, compete in the determination of
symmetry of the order parameter that develops from the
tropic phase. In the limit of vanishingvT coupling, f T is
invariant under the operations of the group O(7), as can be
seen by reexpressingf T with vT50 as

f T
O(7)5

1

2
r TuTW u21uTuTW u4, ~5.6!

whereTW is a seven-dimensional vector with componentsTm
defined by Eq.~2.17c!. Because the underlying O(3) sym
metry of our system is lower than O(7), with Ti jk forming its
seven-dimensional irreducible representation, it is not s
prising that the full free energy isnot O(7) invariant. ThevT
quartic term, explicitly breaks the O(7) symmetry and det
mines which of the sevenTm irreducible components ofTi jk

order at the transition from the isotropic phase.
To determine which components order, it is convenien

use the alternative representation ofTi jk given by Eq.~2.19!.
In this representation we have

f T5
1

2
r TT21uTT41 f vT

, ~5.7!

with

f vT
5

vTT4

150 F9 cos4u11
15

2
sin22u1~112 cos 2u2!

125 sin4u1 sin4u2G , ~5.8!

breaking the O(7) invariance off T . f vT
~and thusf T) has an

O(2) invariance, which, through our choice of parametriz
tion of Ti jk , Eq.~2.19!, is manifested byf vT

’s being indepen-

dent ofu3. Thus, finding the minimum-energy state requir
the minimization of f T(u1 ,u2) over two rather than three
angles.
4-10
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a. I\N¿3 transition

Following standard analysis, forvT.0 we find that the
global minimum off vT

(u1 ,u2) at fixedT is given by

u1
min5

p

2
, ~5.9a!

u2
min50, ~5.9b!

which corresponds to a state with

Tmin
i jk 5T2I 2

i jk , ~5.10!

i.e., a state with a planar triadic order@see Eqs.~3.1! to
~3.4!#, here chosen to lie in them2 l plane~Fig. 10!. A ro-
tation within this plane shows that for a more general cho
@than that defined by the representation choice, Eq.~2.19!# of
m andl axes relative to the molecular body axes, such tria
planar order is described by an arbitrary linear combinat
of the I 2

i jk andI 3
i jk tensors, corresponding to nonvanishingT2

andT3 order parameters, i.e., a nonvanishingTW 2,3.
Since this triadic order defines a plane that brings with

a normal invariant under reflection, it necessarily induc
uniaxial nematic order,Qi j 5S(ninj2 1

3 d i j ) with n along the
normal. To lowest order, the development ofS is brought
about by thef QT coupling of Eq.~4.6c!,

f QT5
1

3
wQTT2

2S, ~5.11!

which leads to the expected uniaxial nematic order with

S52
T2

2

2r Q
. ~5.12!

Hence the state forvT.0 is theN13 phase in which the
nematic and triadic order, transverse to the nematic axis,
exist. From the point of view of symmetry it is equivalent
a liquid of orientationally ordered equilateral triangles w
aligned normals.

Another solution that minimizes the energyf T(u1 ,u2)
and that is degenerate with the state described by the solu
in Eq. ~5.9! is

FIG. 10. A schematic representation of theI→N13 transition.
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u1
min5arccosA5/8, ~5.13a!

u2
min5

p

2
. ~5.13b!

It corresponds to a state

Ti jk5
T

A8
@A5I 1

i jk1A3I 6
i jk #, ~5.14!

which is equivalent toTmin
i jk 5TI2

i jk , Eq. ~5.10! after n andm
are interchanged. Clearly then this solution also repres
the N13 phase, but with the nematic axis alongm rather
thann, and the triadic order in then-l plane.

b. I\T transition

WhenvT,0 the global minimum off vT
(u1 ,u2) at fixedT

is given by

u1
min5

p

2
, ~5.15a!

u2
min5

p

2
, ~5.15b!

which corresponds to the state with

Tmin
i jk 5T6I 6

i jk , ~5.16!

which is invariant under the operations of the tetrahed
groupTd . As can be seen in Fig. 4, the groupTd has three
C2 axes coinciding with the axes of the cube, fourC3 axes
coinciding with the body diagonals of the cube, six reflecti
planes passing through each edge and bisecting the opp
edge of the tetrahedron, and fourS4 improper rotation axes
corresponding to the axes bisecting~four! sets of two oppo-
site edges of the tetrahedron. Because this state lacksn→
2n symmetry, no nematic or any other order is induced
the coupling free energyf c , Eq. ~4.6!. Because of its tetra-
hedral symmetry and because only theT6 component ofTi jk

is nonzero, we identify this state with theT phase illustrated
schematically in Fig. 5~a!. Sincef vT

is independent ofu3, an

arbitrary linear combination ofT6 and T7, rather thanT6
alone, will in general become nonzero at theI→T transition
~Fig. 11!.

For vT,0 we also find another solution that minimize
the energyf T and is degenerate with the state in Eq.~5.15!. It
is given by

FIG. 11. A schematic representation of theI→T transition.
4-11
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u1
min5arccosA5/9, ~5.17a!

u2
min50, ~5.17b!

and corresponds to a state with

Ti jk5
T6

3
@A5I 1

i jk12I 2
i jk #. ~5.18!

However, it can easily be shown that this solution is equi
lent to Tmin

i jk 5TI6
i jk , after a rotation around thel axis,

n→A1/3n1A2/3m, ~5.19a!

m→2A2/3n1A1/3m. ~5.19b!

It, thus, also corresponds to theT phase with pureT6 order in
a rotated coordinate system. The corresponding phase
gram that graphically summarizes phase transitions outli
above is given in Fig. 12.

For vT50, it is clear from Eqs.~5.7! and ~5.8! that the
transition from theI phase is in the O(7) universality clas
and it is to a state thatspontaneouslybreaks O(7) symmetry
by picking out a particular direction in the O(7) symmetr
space~a point on a seven-dimensional sphere! for the vector
Tm to point in. Clearly, as we have seen above, thevT cou-
pling is relevant in the ordered phase and drives the resu
state towardN13 phase forvT.0 and towardT for vT
,0 @28#.

We have also investigated the stability of the O(7) sy
metric transition ~with vT50) to a finite value of thevT
symmetry breaking interaction@29#. In a renormalization
group calculation, just below the upper-critical dimensiond
54, we find that in the presence of thermal fluctuations
vT coupling always drives this transition first-order@30,31#.

FIG. 12. A portion of a phase diagram for a banana-sha
liquid crystal, illustrating two possible transitions out of the isotr
pic phase. ForvT.0, the transition isI→N13, and forvT,0 it is
the I→T transition. Although in mean-field theory these transitio
are continuous, we expect thermal fluctuations to drive them
order. Lowering temperature along a finely tunedvT50 curve, we
expect a continuous transition in the O(7) universality class.
03170
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This is analogous to the similar phenomena known in m
netic systems in which cubic crystal fields drive the O(
transition of hypothetical isotropic magnets first ord
@32,35#.

B. Transitions from the N phase

As illustrated in the flowchart of Fig. 7, there are fiv
symmetry-reducing transitions from the nematic pha
These are theN→V, N→N12, N→N13, N→V12, and
N→NT transitions, all of which we will discuss in deta
below. To determine which transitions will occur for a give
set of phenomenological parameters, we focus on the pa
the full free energy density,f̃ (N), describing harmonic fluc-
tuations about the nematic phase with nonvanishingS. This
free energy,f̃ (N), is determined by the harmonic parts of th
energiesf p , f Q , and f T , and by the coupling termsf c . The
most important contributions tof c come from f pQ , and
f pQT , which can be easily evaluated. The harmonic free
ergy f̃ (N) can be expressed as a sum of five independ
parts,

f̃ (N)5 f̃ p3 ,T1

(N) 1 f̃ B1,2

(N) 1 f̃ T2,3

(N) 1 f̃ p1,2,T4,5

(N) 1 f̃ T6,7

(N) , ~5.20!

where

f̃ p3 ,T1

(N) 5 1
2 r̃ p3

(N)p3
21 1

2 r̃ T1

(N)T1
21ãp1 ,T3

(N) p3T1 , ~5.21a!

f̃ B1,2

(N) 5 1
2 r̃ B1,2

(N) ~B1
21B2

2!, ~5.21b!

f̃ T2,3

(N) 5 1
2 r̃ T2,3

(N) ~T2
21T3

2!, ~5.21c!

f̃ p1,2,T4,5

(N) 5 1
2 r̃ p1,2

(N) ~p1
21p2

2!1 1
2 r̃ T4,5

(N) ~T4
21T5

2!

1ãp1,2,T4,5

(N) ~p1T41p2T5!, ~5.21d!

f̃ T6,7

(N) 5 1
2 r̃ T6,7

(N) ~T6
21T7

2!, ~5.21e!

with

r̃ p3

(N)5r p2 4
3 wpQS,

r̃ T1

(N)5r T2 8
15 wQTS2~ 28

45 w11 4
5 w21 2

9 w3!S2,

ãp3 ,T1

(N) 52A2

5
wpQTS,

r̃ B1,2

(N) 52r Q14wQS1 16
3 uQS2,

r̃ T2,3

(N) 5r T1 2
3 wQTS2 2

9 ~w11w3!S2,

r̃ p1,2

(N) 5r p1 2
3 wpQS,

r̃ T4,5

(N) 5r T2 2
5 wQTS2~ 26

45 w11 8
15 w21 2

45 w3!S2,

d

st
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ãp1,2,T4,5

(N) 52
2

A15
wpQTS,

r̃ T6,7

(N) 5r T2 2
9 ~2w12w3!S2, ~5.22!

Within mean-field theory, theN phase becomes unstable
the development of biaxial order~characterized by a linea
combination ofB1 and B2), of triaxial order~characterized
by a linear combination ofT2 and T3), and of NT order
~characterized by a linear combination ofT6 andT7), when
r̃ B1,2

(N) @36#, r̃ T2,3

(N) , and r̃ T6,7

(N) , respectively, pass through zer

The N phase becomes unstable to longitudinal vector or
~characterized by coupledp3-T1 order parameters! and to
transverse vector order~characterized by coupledp1-T4 or-
der parameters!, when the determinants,

Dp3 ,T1

(N) 5 r̃ p3

(N) r̃ T1

(N)2~ ãp3 ,T1

(N) !2, ~5.23a!

Dp1,2,T4,5

(N) 5 r̃ p1,2

(N) r̃ T4,5

(N) 2~ ãp1,2,T4,5

(N) !2, ~5.23b!

respectively, pass through zero. The nature of transitions
of the N phase will be determined by which member of t
set, SN5$Dp3 ,T1

(N) , r̃ B1,2

(N) , r̃ T2,3

(N) , r̃ T6,7

(N) ,Dp1,2,T4,5

(N) %, first passes

through zero on lowering the temperature.

1. N\V transition

The N→V transition is signaled by the development
vector order along the unique directionn of theN phase, i.e.,
by the development ofp3 andT1 order. Thus, this transition
occurs ifDp3 ,T1

(N) is the first of the setSN to become zero. The

relative sign ofp3 and T1 is fixed by the eigenfunction as
sociated with the smallest eigenvalue of the matrix defin

by f̃ p3 ,T1

(N) . The overall sign is, however, arbitrary~Fig. 13!.

Since it is the associatedZ2 symmetry ~with V pointing
along or antiparallel ton) that is broken, theN→V transition
is in the well-studied Ising universality class with coupl
order parameters

p3;uDp3 ,T1

(N) 2Dp3 ,T1

(N)c ub Ising, ~5.24a!

FIG. 13. A schematic representation of theN→V transition.
03170
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T1;uDp3 ,T1

(N) 2Dp3 ,T1

(N)c ub Ising, ~5.24b!

growing for Dp3 ,T1

(N) ,Dp3 ,T1

(N)c . Oncep3 andT1 become non-

zero, they donot force the development of any other orde
and theV phase is completely characterized byp3 , S, andT1
order parameters, as illustrated in Figs. 3 and 7.

2. N\N¿3 transition

The N13 phase develops out of theN phase with the
appearance of a linear combination ofT2 andT3 order~Fig.
14!. As discussed in Eqs.~3.1! to ~3.4!, T2 andT3 define a
two-dimensional representation of the group of rotations p
pendicular ton and describe triadic order in the plane pe
pendicular ton. Since theN phase is invariant with respect t
arbitrary rotations aboutn, the free energy of theN phase is
a function only of the rotationally invariant combination
T2

21T3
25uTW 2,3u2. Thus, theN→N13 transition is in the

well-knownXY universality class. Within mean-field theor
this transition occurs whenr̃ T2,3

(N) is the first in the setSN to

pass through zero on cooling.TW 2,3 order drives no other or-
der, and theN13 phase is completely characterized bySand
TW 2,3 with

T2}T3;u r̃ T2,3

(N) 2 r̃ T2,3c
(N) ubXY, ~5.25!

for r̃ T2,3
, r̃ T2,3c

(N) .

3. N\N¿1 „ÆV¿2… transition

FIG. 14. A schematic representation of theN→N13 transition.

FIG. 15. A schematic representation of theN→N11 transition.
4-13
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TheV12 phase is distinguished from theN phase by the
existence of a vector order described byp in the planeper-
pendicularto n. We can arbitrarily choosep to be alongm so
thatp1 is nonzero. Since there is already uniaxial order in
N phase,T4 order has the same symmetry in theN phase as
doesp1 order, and not surprisinglyp1 andT4 ~as are generi-
cally p2 andT5) are coupled inf̃ (N), Eq. ~5.21d!. The invari-
ance of theN phase with respect to arbitrary rotations abo
n implies that the energy of theN phase must be a functio
of rotationally invariant combinationsp1

21p2
25upW 1,2u2, T4

2

1T5
25uTW 4,5u2, andp1T41p2T55pW 1,2•TW 4,5 as is the harmonic

free energyf̃ p1,2,T4,5

(N) in Eq. ~5.21d!. TheN→V12 transition

is thus in theXY universality class. It occurs in mean-fie
theory whenDp1,2,T4,5

(N) is the first of the setSN to pass through

zero upon cooling. The order parametersp1 andT4 ~andp2
and T5 related to them by a rotation in them-l plane! will
drive the N→V12 transition, both growing continuousl
from zero as

p1}T4;uDp1 ,T4

(N) 2Dp1 ,T4

(N)c ubXY, ~5.26!

for Dp1 ,T4

(N) ,Dp1 ,T4

(N)c . Once these order parameters beco

nonzero, however, they pick out a direction in the plane p
pendicular ton that drives the development of a nonvanis
ing biaxial orderB1 via the f pQ and f QT coupling free ener-
gies, as is clear from Fig. 15. In mean-field theory,B1;p1

2

and T2;p1
3. Below the critical dimensiondc54, however,

potentials in the coupling energies are relevant, and@24,25#

B1;p1
s2 T2;p1

s3 , ~5.27!

where sn5n1xnn(n21) with xn only weakly dependen
on n.

To emphasize the secondary role thatB1 and T2 order
parameters play at theN→V12 transition, in Fig. 7,B1 and
T2 are placed in parentheses along theN→V12 line. There-
fore, theV12 phase is reached from theN phase~character-
ized by a finite value ofS) via the well-studied, second-orde
XY transition upon the development ofp1 , B1 , T2, andT4
order parameters or a set that can be obtained from this
by anXY rotation.

4. N\N¿2 transition

FIG. 16. A schematic representation of theN→N12 transition.
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The development of nonvanishing biaxial order parame
BW 1,25(B1 ,B2) converts the uniaxialN phase to theN12
phase~Fig. 16!. The biaxial order parameter is a rank-
symmetric-traceless tensor, which, because of its confi
ment to the two-dimensional plane perpendicular to
uniaxial axisn, is equivalent to a complex order paramet
forming an irreducibleL52 representation of the U(1
group. TheN→N12 transition is thus in theXY universal-
ity class. In mean-field theory, it takes place whenr̃ B1,2

is the

first of the setSN to pass through zero and more generica
in the presence of thermal fluctuations, we expect,

B1}B2;u r̃ B1,2

(N) 2 r̃ B1,2c
(N) ubXY, ~5.28!

for r̃ B1,2

(N) , r̃ B1,2c
(N) . Biaxial order forces nopi or Ti jk order, so

the N12 phase is fully characterized by nematic order p
rameterS and an arbitrary linear combination ofB1 andB2

biaxial order parameters, i.e., byBW 1,2.

5. N\NT transition

Finally, theNT phase is distinguished from theN phase by
the development of an arbitrary linear combination of theT6

andT7, i.e., of theTW 6,7 order ~Fig. 17!. Since such an orde
parameter picks out a single direction within theisotropic
plane perpendicular ton, this transition, like theN→N12,
N→N13, andN→V12 transitions, is in theXY universal-
ity class. In order for this transition to occur, in mean-fie
theory r̃ T6,7

must pass through zero before any of the oth

members of the setSN . If we restrict the interaction energie
to f pQ , f QT and f pQT , r̃ T6,7

(N) will never be the smallest in

the set. However, higher-order terms of the formf Q2T2 can
favor the formation ofT6-T7 order over the others and mak
this transition possible, with

T6}T7;u r̃ T6,7

(N) 2 r̃ T6,7c
(N) ubXY, ~5.29!

for r̃ T6,7

(N) , r̃ T6,7c
(N) . Because theT6-T7 order drives no other

order, theNT phase is characterized by nonvanishingS, and
TW 6,7 order.

FIG. 17. A schematic representation of theN→NT transition.
4-14
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C. Transitions from the V phase

In the V phase, three order parameters,p3 , S, andT1 are
nonzero. Harmonic fluctuations of the other order parame
in this phase are described by the free energy density

f̃ (V)5 f̃ B1,2,T6,7

(V) 1 f̃ T2,3

(V) 1 f̃ p1,2,Q3,4,T4,5

(V) , ~5.30!

where

f̃ B1,2,T6,7

(V) 5 1
2 r̃ B1,2

(V) ~B1
21B2

2!1 1
2 r̃ T6,7

(V) ~T6
21T7

2!

1ãB1 ,T6

(V) ~B1T61B2T7!,

f̃ T2,3

(V) 5 1
2 r̃ T2,3

(V) ~T2
21T3

2!, ~5.31!

f̃ p1,2,Q3,4,T4,5

(V) 5 1
2 r̃ p1,2

(V) ~p1
21p2

2!1 1
2 r̃ Q3,4

(V) ~Q3
21Q4

2!

1 1
2 r̃ T4,5

(V) ~T4
21T5

2!1ãp1,2,Q3,4

(V) ~p1Q31p2Q4!

1ãp1,2,T4,5

(V) ~p1T41p2T5!

1ãQ3,4,T4,5

(V) ~Q3T41Q4T5!,

where

r̃ B1,2

(V) 5 r̃ B1,2

(N) 2 2
5 ~2w11w3!T1

2 ,

r̃ T6,7

(V) 5 r̃ T6,7

(N) 1~4uT2 2
5 vT!T1

2 ,

ãB1,2,T6,7

(V) 5
4

A15
wQTT12A2

3
wpQTp3 ,

r̃ T2,3

(V) 5 r̃ T2,3

(N) 1~4uT1 6
5 vT!T1

2 ,

r̃ p1,2

(V) 5 r̃ p1,2

(N) 14upp3
21

6

A10
wpTp3T1 ,

r̃ Q3,4

(V) 5r Q2wQS1 8
3 uQS22 2

10 ~4w112w22w3!T1
2 ,

r̃ T4,5

(V) 5 r̃ T4,5

(N) 1~4uT1 6
25 vT!T1

2 ,

ãp1,2,Q3,4

(V) 52A2wpQp31
1

A5
wpQTT1 ,

ãp1,2,T4,5

(V) 5ãp1,2,T4,5

(N) 22A3

5
wpTp3

2 ,

ãQ3,4,T4,5

(V) 52
2

5A3
wQTT122A 2

15
p3

2
2

15A3
~w116w214w3!ST1 . ~5.32!
03170
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As Fig. 7 indicates, there are symmetry-lowering transitio
from the V phase to theV12, V13, and N1V phases.
Which one occurs is determined by which the setSV

5$ r̃ T2,3

(V) ,DB1,2,T6,7

(V) ,Dp1,2,Q3,4,T4,5

(V) %, where

DB1,2,T6,7

(V) 5 r̃ B1,2

(V) r̃ T6,7

(V) 2~ ãB1,2,T6,7

(V) !2 ~5.33!

~and Dp1,2,Q3,4,T4,5

(V) unenlightenly complicated! first reaches

its critical value. The nature of the transition out of theV
phase will be determined by which of these three mean-fi
reduced temperatures first reaches the respective critical
perature.

1. V\V¿3 transition

This transition occurs ifr̃ T2,3

(V) reaches its critical value

r̃ T2,3c
(V) beforeDB1,2,T6,7

(V) andDp1,2,Q3,4,T4,5

(V) reach their respective

critical values, both zero in mean-field theory~Fig. 18!.
Since there is rotational invariance in the space defined byT2

and T3, this transition is in theXY universality class and

corresponds to development of triaxial orderTW 2,3 in the plane
perpendicular to the vector order axisp3. Since no other

order is driven by this development of theTW 2,3 order, this
order parameter, together withp3 , S, andT1 ~already present
in the V phase! completely characterizes theV13 phase.

2. V\V¿2 transition

FIG. 18. A schematic representation of theV→V13 transition.

FIG. 19. A schematic representation of theV→V12 transition.
4-15
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If DB1,2,T6,7

(V) is the first in the setSV to reach its critical

value, there will be a transition from theV to theV12 phase
signaled by the development of biaxial order in the pla
perpendicular ton characterized by a specific linear comb
nation ofBW 1,2 andTW 6,7 ~Fig. 19!. Rotational invariance in this
plane implies that the transition will also be in theXY uni-
versality class in which an arbitrary linear combination
(B1 ,T6) and (B2 ,T7) will spontaneously order.

3. V\N¿V transition

If Dp1,2,Q3,4,T4,5

(V) is the first in the setSV to reach its critical

value, there will be a transition from theV phase to one in
which vector (pW 1,2) and third-rank tensor (TW 4,5) order de-
velop in the plane perpendicular to the already existing v
tor order,p3 ~Fig. 20!. Without loss of generality we repre
sent this transverse vector ordering by nonzerop1 and T4.
This set of order parameters is invariant under only one n
trivial operation: reflection fromy to 2y. Thus the new
phase hasC1h symmetry and is theN1V phase. Once thes
order parameters have been established, they will driveB1 ,
T2, andT6 nonzero via higher-order terms such asf pQ and
f pT . Since theV→N1V transition is controlled by the de
velopment of vector order in a plane, we expect it to be
the XY universality class.

D. Transitions from the N¿2 phase

The N12 phase is the standard biaxial nematic ph
with nonvanishingS and an arbitrary linear combination o
biaxial B1 andB2 order parameters; without loss of gener
ity, for convenience, we choose our coordinate syst
(m,l,n) so that the biaxial order is described byB1. As the
flow chart of Fig. 7 indicates, theN12 phase can underg
symmetry-lowering transitions to theV12 and (NT12)*
phases. Harmonic fluctuations about theN12 phase, which
determine the nature of transitions out of theN12 phase, are
described by

f̃ (N12)5 f̃ p3 ,T1 ,T6

(N12) 1 f̃ p1 ,T2 ,T4

(N12) 1 f̃ p2 ,T3 ,T5

(N12) 1 f̃ T7

(N12) ,

~5.34!

where

FIG. 20. A schematic representation of theV→N1V transition.
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f̃ p3 ,T1 ,T6

(N12) 5 1
2 r̃ p3

(N12)p3
21 1

2 r̃ T1

(N12)T1
21 1

2 r̃ T6

(N12)T6
2

1ãT1 ,T6

(N12)T1T61ãp3 ,T1

(N12)p3T11ãp3 ,T6

(N12)p3T6 ,

~5.35a!

f̃ p1 ,T2 ,T4

(N12) 5 1
2 r̃ p1

(N12)p1
21 1

2 r̃ T2

(N12)T2
21 1

2 r̃ T4

(N12)T4
2

1ãT2 ,T4

(N12)T2T41ãp1 ,T2

(N12)p1T21ãp1 ,T4

(N12)p1T4 ,

~5.35b!

f̃ T7

(N12)5 1
2 r̃ T7

(N12)T7
2 , ~5.35c!

where

r̃ p3

(N12)5 r̃ p3

(N) ,

r̃ T1

(N12)5 r̃ T1

(N)2 2
5 ~2w11w3!B1

2 ,

r̃ T6

(N12)5 r̃ T6,7

(N) 2 2
3 ~2w112w21w3!B1

2 ,

ãT1 ,T6

(N12)5
4

A15
wQTB12

4

3A15
~2w113w22w3!SB1 ,

ãp3 ,T1

(N12)5ãp3 ,T1

(N) ,

ãp3 ,T6

(N12)5A2

3
wpQTB1 ,

r̃ p1

(N12)5 r̃ p1,2

(N) 22wpQB1 ,

r̃ T2

(N12)5 r̃ T2,3

(N) 22~w11w2!B1
2 ,

r̃ T4

(N12)5 r̃ T4,5

(N) 2 4
5 wQTB11 2

15 @w1~4S27B1!1w2~4S2B1!

22w3~2S1B1!#B1 ,

ãT2 ,T4

(N12)5
2

A15
wQTB12

2

3A15
@2w1S13w2~2S2B1!

1w3~2S23B1!#B1,

ãp1 ,T2

(N12)52wpQTB1 ,

ãp1 ,T4

(N12)5ãp1,2,T4,5

(N) 1
1

A15
wpQTB1 ,

r̃ T7

(N12)5 r̃ T6,7

(N) 2 2
3 ~2w12w3!B1

2 , ~5.36!

and f̃ p2 ,T3 ,T5

(N12) is obtained from f̃ p1 ,T2 ,T4

(N12) by replacements:

p1→p2 , T2→T3 , T4→T5 , B1→2B1.
4-16
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Following our earlier analysis of other transitions, we i
troduce the determinantsDp3 ,T1 ,T6

(N12) , Dp1 ,T2 ,T4

(N12) , andDp2 ,T3 ,T5

(N12)

of the matrices, respectively, defined by the coefficients
the free energy densitiesf̃ p3 ,T1 ,T6

(N12) , f̃ p1 ,T2 ,T4

(N12) , and f̃ p2 ,T3 ,T5

(N12) .

Which transition from theN12 phase takes place is dete
mined by the set

SN125$ r̃ T7

(N12) ,Dp3 ,T1 ,T6

(N12) ,Dp1 ,T2 ,T4

(N12) ,Dp2 ,T3 ,T5

(N12) %.

.

1. N¿2\V¿2 transition

Interestingly, there are three routes from theN12 phase
to a phase withV12 symmetry. In the first route, the nem
atic axis alongn, which in theN12 phase is invariant unde
n→2n, is converted to a vector axis with the developme
of p3 , T1, andT6 order. The biaxial order of theN12 phase
persists, resulting in theV12 phase with vector order alon
the twofold axisn. In mean-field theory, this transition t
V12 phase takes place whenDp3 ,T1 ,T6

(N12) is the first in the set

SN12 to pass through zero~Fig. 21!.
In the second route, vector order develops along the

rectionm, corresponding to the maximum eigenvalue of t
nematic order parameterQi j in the plane perpendicular ton.
In this route, which, in mean-field theory occurs wh
Dp1 ,T2 ,T4

(N12) is the first inSN12 to go through zero, thep1 , T2,

andT4 order parameters become nonzero.
In the third route,Dp2 ,T3 ,T5

(N12) is the first in SN12 to go

through zero, and vector order develops along thel axis per-
pendicular tom, defined by the eigenvector ofQi j with mini-
mum eigenvalue in the plane perpendicular ton. It is thep2 ,
T3, andT5 order parameters that become nonzero at the t
sition.

In all three versions of theN12→V12 transition the
vectorp order develops along one of the three twofold sy
metry axes defined by the biaxial order of theN12 phase,
the eigenvectors ofQi j . In each case,p can develop either a
positive or negative value along an axis already chosen
the N12 phase. Consequently, theseN12→V12 transi-
tions are in the Ising universality class, with well-know
critical properties.

FIG. 21. A schematic representation of theN12→V12 transi-
tion.
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2. N¿2\„NT¿2…* transition

For our choice of them-l axes, for which the biaxial orde
of the N12 phase is characterized byB15” 0 and B250,
another symmetry-reducing transition from theN12 phase
is signaled by the appearance of theT7 order. It corresponds
to the N12→(NT12)* and takes place when the reduc
temperaturer̃ T7

(N12) is the smallest in the setSN12. For a

different choice of axes, in whichB25” 0 andB150 charac-
terize biaxial order, this transition would instead correspo
to development ofT6 order. And, more generally, in anN
12 phase characterized by a particular linear combination
B1 and B2, i.e., by BW 1,2 a correspondingorthogonal linear
combination ofT6 andT7, i.e., theTW 6,7 order parameter, such
that BW 1,2•TW 6,750 develops at theN12→(NT12)* transi-
tion.

To understand the nature of this transition it is helpful
first visualize theN12 phase as a collection of orientation
ally ordered but positionally disorderedplanar diamond
units, each consisting of two, leg-to-leg banana-shaped m
ecules, illustrated in Figs. 6~b!, 5~c!, and 22. One can choos
the $n,m,l% triad such that the diamonds lie in then-m plane
and, therefore, that their biaxiality is characterized by no
vanishingS andB1 order parameters. Now the transition
the (NT12)* phase corresponds tocounter, out-of-plane
twisting about then axis of the two diamond-forming
banana-shaped molecules. It is signaled by the developm
of theT7 order parameter, with the twist angled in the range
0<d<p/2 given by

tand5T7 /B1 . ~5.37!

We note that the lower limit of this ranged50 corresponds
to the planar diamonds of the achiralN12 phase and the
upper limit, d5p/2 ~reached only in the limitT7→` or
B150) corresponds to theNT phase, which is also achira
and lacks biaxial order. In contrast, all other values of
twist angle 0<d<p/2, corresponding to a nonzero value
T7 describe aspontaneouslyinduced chirality of the (NT
12)* phase. Since the sign of the twist angle~and corre-
spondingly the sign ofT7) can be either positive~right
handed! or negative~left handed!, in mean-field theory the

FIG. 22. A schematic representation of theN12→(NT12)*
transition.
4-17
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N12→(NT12)* transition is clearly in the well-known
Ising universality class~but see below!.

Finally, we observe that in a phase which spontaneou
breaks chiral~mirror! symmetry, a tensor, totally antisym
metric in all its indices~akin to the well-knowne i jk tensor!
must spontaneously emerge. It is easy to verify that in
chiral (NT12)* phase, most generally characterized by
nite S, B1 , B2 , T6, andT7 order parameters,J i jk , given by

J i jk5QisBjtTstk1QjsBktTsti1QksBitTst j ~5.38a!

5
1

A6
S~B1T72B2T6!e i jk , ~5.38b!

is indeed such a fullyantisymmetrictensor, which develops
spontaneously from our theory, that is based solely on fu
symmetrictensorsQi j andTi jk .

The existence of a fully antisymmetric third-rank tens
allows for invariant couplings linear in spatial derivative. F
example, a term of the form

J i jkQil
“jQ

kl;T7n•“3n ~5.39!

is permitted, where the right-hand side represents the do
nant part near the transition whereS and B1 are effectively
constant,T7 is small, andn is the Frank director. The elasti
energy of theN12 phase includes the usual twist ener
K2@n•“3n#2. There are other terms in the elastic free e
ergy arising from the biaxial order of theN12 phase, and
they may influence the nature of the ground state of
(NT12)* phase. The existence of terms such as that of
~5.39! that are linear in spatial gradients implies that t
ground state of the (NT12)* phase will be spatially inho-
mogeneous. The simplest chiral inhomogeneous phase
can imagine is a cholesteric (NT12)* phase in whichn
rotates in a helical fashion as in the standard cholesteric
pitch P and pitch wave numberq052p/P which near the
transition to theN12 phase at temperatureTc scales as

q0;T7 /K2;uDTu1/2 ~5.40!

in mean-field theory whereDT5T2Tc . In a true critical
theory,q0 will also scale to zero as a power ofuDTu provided
the transition remains second order. In the presence of fl
tuations, theT7n•“3n term is likely to modify the univer-
sality class of this transition to something other than
naively expected Ising universality class~possibly even driv-
ing the transition first order!, but we have not, however, ana
lyzed the critical theory in detail. If molecules themselves
chiral, or a chiral dopant is added, then theN12 phase will
be a chiral (N12)* phase with a nonvanishingq0. Chirality
will act like an external ordering field~like the magnetic field
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of an Ising model! for q0 with strengthh, and if theN12-to-
(NT12)* transition is second order, one can expectq0(T,h)
to scale as

q0~T,h!5uT2Tcubqf ~h/uT2TcuD!, ~5.41!

whereTc is the transition temperature,D is the external-field
gap exponent, andbq is a critical exponent, which in mean
field theory is the order-parameter exponentb51/2.

E. Transitions from the N¿3 phase

As we indicate in Fig. 7, theN13 phase, described b
coexistence of the uniaxial order parameterS and the trans-
verse ~to the nematic axis! triaxial order parameterTW 2,3
[(T2 ,T3), can undergo symmetry-lowering transitions
the V12, V13, andN1V phases.

These transitions are all signaled by the developmen
vector orderp. They are distinguished by whether this vect
order is along @N13→V13 transition#, transverseto @N
13→V12 ([N11) transition#, or at an arbitrary polar
angle 0<d<p/2 to the uniaxialn axis, singled out in the
nematic phase. Although it is convenient to think of the
transitions as driven by the vector orderp, more precisely
they are driven by specific linear combinations of the vec
and other order parameter, linearly coupled top.

It is convenient to choose them-l axes so that the triaxia
order of theN13 phase, in the plane perpendicular ton
phase is described byT25” 0 andT350. For this choice, the
harmonic fluctuations about theN13 phase are described b

f̃ (N13)5 f̃ p3 ,T1

(N13)1 f̃ p1 ,B1 ,T4

(N13) 1 f̃ Q3,4,T6,7

(N13) , ~5.42!

where

f̃ p3 ,T1

(N13)5 1
2 r̃ p3

(N13)p3
21 1

2 r̃ T1

(N13)T1
21ãp3 ,T1

(N13)p3T1 ,

f̃ p1,2,B1,2,T4,5

(N13) 5 1
2 r̃ p1,2

(N13)~p1
21p2

2!1 1
2 r̃ B1,2

(N13)~B1
21B2

2!

1 1
2 r̃ T4,5

(N13)~T4
21T5

2!1ãp1,2,B1,2

(N13) ~p1B12p2B2!

1ãp1,2,T4,5

(N13) ~p1T41p2T5!

1ãB1,2,T4,5

(N13) ~B1T42B2T5!,

f̃ Q3,4,T6,7

(N13) 5 1
2 r̃ Q3,4

(N13)~Q3
21Q4

2!1 1
2 r̃ T6,7

(N13)~T6
21T7

2!

1ãQ3,4,T6,7

(N13) ~Q3T62Q4T7!, ~5.43!

with the coefficients

r̃ p3

(N13)5 r̃ p3

(N) ,

r̃ T1

(N13)5 r̃ T1

(N)1~4uT1 6
5 vT!T2

2 ,
4-18
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ãp3 ,T1

(N13)5ãp3 ,T1

(N) ,

r̃ p1,2

(N13)5 r̃ p1,2

(N) ,

r̃ B1,2

(N13)5 r̃ B1,2

(N) 22~w11w2!T2
2 ,

r̃ T4,5

(N13)5 r̃ T4,5

(N) 1~4uT1 4
5 vT!T2

2 ,

ãp1,2,B1,2

(N13) 52wpQTT2 ,

ãp1,2,T4,5

(N13) 5ãp1,2,T4,5

(N) ,

ãB1,2,T4,5

(N13) 5
2

A15
wQTT22

4

3A15
~w113w21w3!ST2 ,

r̃ Q3,4

(N13)5r Q2wQS1 8
3 uQS22 1

2 w1T2
2 ,

r̃ T6,7

(N13)5 r̃ T6,7

(N) 14uTT2
2 ,

ãQ3,4,T6,7

(N13) 52
1

A3
wQTT22

2

3A3
~6w12w3!ST2 .

~5.44!

Transitions out of theN13 phase are controlled by the s
SN135$Dp3 ,T1

(N13) ,Dp1,2,B1,2,T4,5

(N13) ,DQ3,4,T6,7

(N13) % of determinants of

the harmonic coefficients that can be read off fromf̃ (N13)

above.

1. N¿3\V¿3 transition

TheN13→V13 transition occurs whenDp1 ,T3
is small-

est in the setSN13. In this transition, vector order develop
along the nematicn axis to produce a linear combination o
p3 andT1 order, with the latter explicitly induced as a thir
harmonic of thep3 order. The discrete,Z2 , n→2n sym-
metry, characterizing theN13 phase is lost at this transition
Consequently, theN13→V13 transition is in the familiar
Ising universality class~Fig. 23!.

FIG. 23. A schematic representation of theN13→V13 transi-
tion.
03170
2. N¿3\V¿2 „ÄN¿1… transition

V12 order develops fromN13 order by spontaneousl
favoring one of the three equivalent directions in the pla
perpendicular ton and, thereby, converting transversetri-
axial order of N13 into transversevector order of N11,
equivalently described byV12 ~Fig. 24!. With p chosen to
be alongm, the transverse vector order is signaled by t
development of finitep1 order parameter. As can be see
from f̃ p1,2,B1,2,T4,5

(N13) , Eq. ~5.43!, order parametersB1 and T4,

associated withp1 and linearly coupled to it, are also simu
taneously induced at theN13→V12 transition. For a more
generic choice of the orientation ofm-l within the plane
perpendicular ton, theV12 phase is described by a specifi
linear combination ofpW 1,2[(p1 ,p2), BW 1,2[(B1 ,B2), and
TW 4,5[(T4 ,T5), obtained from the basic set$p1 ,B1 ,T4% by a
planar rotation about the nematic axisn.

The N13→V12 transition is the exit of choice out o
the N13 phase, whenDp1,2,B1,2,T4,5

(N13) is the smallest in the

SN13 set. Since theN13 phase is characterized by thre
equivalent directions~in the plane perpendicular to the nem
atic axis n) along which vector orderp can develop, we
expect this transition to be in the universality class of t
three-state Potts model, believed to be weakly first orde
three dimensions and continuous in two.

These symmetry based expectations are born out by
detailed computations, which show that the rotational deg
eracy in them-l plane, which is present in the harmonic fre
energy,f̃ p1,2,B1,2,T4,5

(N13) , Eq. ~5.43! is lifted by energy contribu-

tions of the form

d f̃ p1,2,B1,2,T4,5

(N13) 52ap cos 3f2aB cos 6f, ~5.45!

wheref is the angle between the developing transverse v
tor order parameterspW 1,2 ~as well asBW 1,2 andTW 4,5) and them
axis defined by triaxial order of theN13 phase,

ap5S 1
2 wpTp1,2

3 2
4

5A15
vTT4,5

3 D T2 , ~5.46a!

FIG. 24. A schematic representation of theN13→N11 tran-
sition.
4-19
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aB5wQ3T2B1,2
3 T2

2 , ~5.46b!

and d f̃ p1,2,B1,2,T4,5

(N13) arises from the following nonlinear cou

plings:

f pT52wpTpipj pkTi jk , ~5.47a!

f Q3T252wQ3T2Qi 1 j 1Qi 2 j 2Qi 3 j 3Ti 1i 2i 3Tj 1 j 2 j 3,
~5.47b!

f T45vTTi 1i 2i 3Ti 1i 4i 5Ti 2i 4i 6Ti 3i 5i 6. ~5.47c!

The three degenerate minima of the free ene
d f̃ p1,2,B1,2,T4,5

(N13) , Eq. ~5.45!, for the vector order parameter t

settle into, correspond precisely to the three equivalent st
of the three-state Potts model, supporting our expecta
that theN13→V12 transition is in the three-state Pot
model universality class.

3. N¿3\N¿V transition

The transition that occurs whenD̃Q3,4,T6,7

(N13) is the smallest

of the setSN13 is, as we shall see, to theN1V phase, but the
development of all of the order parameters characteriz

this phase is complicated. At theharmoniclevel in TW 6,7 and

QW 3,4, f̃ (N13) possesses a rotational invariance in the pla
perpendicular to the nematic axisn. However, because th
N13 phase is characterized by threefold order in thex-y
plane perpendicular ton ~aligned along thez axis!, this con-
tinuous symmetry will be reduced to a discrete clock sy
metry ~Fig. 25!.

It is convenient to focus on ordering ofQ3 and T6. The
establishedN13 order can be viewed as an equilateral t
angle that favors alignment ofm towards one of its vertices
Thus one might predict the symmetry of a three-state cl
model. However, the apolar~nematic alongz axis! nature of

theN13 state ensures that the free energyf̃ (N13)(Q3 ,T6) is
invariant undern→2n. This, combined with transformatio
properties of Q3 and T6 under n→2n, with Q3 ,T6→
2Q3 ,2T6 guarantees an additional Ising symmetry of t
free energyf̃ (N13)(Q3 ,T6)5 f̃ (N13)(2Q3 ,2T6). This then

FIG. 25. A schematic representation of theN13→N1V tran-
sition.
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leads to a total of six free-energetically degenerate sta
Integrating out theTW 6,7 order parameter and focusing onQW 3,4
alone, shows that the six states correspond to alignmen
mQ along three vertices and three edge bisectors of the e
lateral triangle defined by theN13 phase. Thus there is
six-state clock symmetry described by a coupling prop
tional toT2

2Q3
6, and we expect theN13→N1V transition to

be in the universality class of the six-state clock mod
which apart from irrelevant variables is in the universal
class of theXY model. OnceQ3 andT6 order is established
T4 , p1, and B1 order is driven by couplings of the form
Q3

3B1 and others. Thus,p1;B1;T4;Q3
2. Then in mean-

field theory,B1 order will drive p3 and T1 order via cou-
plings of the formB1T6p3. Thusp3;T1;T6

3;Q3
3.

F. Transitions from the T phase

The tetrahedraticT phase withTd symmetry is character
ized by a nonvanishing arbitrary linear combination ofT6

and T7, which we collectively refer to asTW 6,7. In this sec-
tion, without lost of generality, we will choose the orient
tion of them-l axes so thatT7 is the only nonvanishing orde
parameter in theT phase. The harmonic free energy dens
for fluctuations from theT phase can be expressed as

f̃ (T)5 f̃ Q1

(T)1 f̃ Q2

(T)1 f̃ p1,2,3Q3,4,5

(T) , ~5.48!

where

f̃ Q1

(T)5 1
2 r̃ Q1

(T)Q1
2 ,

f̃ Q2

(T)5 1
2 r̃ Q2

(T)Q2
2 , ~5.49!

f̃ p1,2,3Q3,4,5

(T) 5 1
2 r̃ Q3,4,5

~Q3
21Q4

21Q5
2!1 1

2 r p~p1
21p2

21p3
2!

2
1

A3
wpQTT7~p1Q41p2Q31p3Q5!

with the coefficients given by

r̃ Q1

(T)5r Q2 1
3 ~2w12w3!T7

2 , ~5.50a!

r̃ Q2

(T)5r Q2 1
3 ~2w12w3!T7

2 , ~5.50b!

r̃ Q3,4,5
5r Q2 1

3 ~2w112w21w3!T7
2 . ~5.50c!

The structure off̃ (T) implies that there are three symmetr
lowering transitions from theT phase, driven, respectively
by fluctuations inQ1 , Q2, and a linear combination o
pairsp1 andQ4 , p2, andQ3, andp3 andQ5. Which of these
transitions occurs is determined by the setST

5$ r̃ Q1

(T) , r̃ Q2

(T) , Dp1,2,3Q3,4,5

(T) %.
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In the presence ofT7 order, all of thepm
i and Qm

i j order
parameters exhibit third-order invariants. Since they play
important role in determining the nature of transitions fro
the T phase, we display them here,

f Q35wQFA3

2
Q1~Q2

21Q5
2!2

A3

2A2
Q1~Q3

21Q4
2!

2
3

2A2
Q2~Q3

22Q4
2!2

1

A6
Q1

32
3

A2
Q3Q4Q5G ,

f p3T52A6wpTT7p1p2p3 . ~5.51!

We note the appearance of theQ3Q4Q5 term in f Q3, which
can be paired with thep1p2p3 product in f p3T . There are of
course also third-order terms inQ, whose coefficients are
proportional to powers ofT7, which, for smallT7, are sub-
dominant towQ term that we displayed above. Because th
higher order terms do not qualitatively change our resu
with their effects accounted for by an effectivewQ coupling,
we will not consider them here.

1. T\NT transition

As illustrated in Fig. 7, one of the three possib
symmetry-reducing transitions out of the tetrahedraticT
phase is theT→NT phase transition. TheNT order develops
by favoring one of the three twofold axes of the tetrahed
through the growth of uniaxialQi j order along that axis a
shown in Figs. 4, 5, and 26. In our parametrization, we fo
on the twofold axes defined by6n. In this case, theT
→NT transition is signaled by the development ofQ1 ~or
equivalentlyS) order. Because of the existence of the thir
order Q1

3 invariant, Eq.~5.51!, this transition is generically
first order. It occurs in mean-field theory whenr̃ Q1

(T)(T7)

5w̃Q
2 (T7)/12ũQ(T7), where the third- and fourth-order cou

plings w̃Q(T7) and ũQ(T7) can in principle depend on
strength of theT order, characterized byT7 order parameter
Because no other order parameter is explicitly induced at
transition, and with the convenient choice of them-l axes
~that we have made here! the resultingNT phase is fully
characterized by theT7 andS order parameters.

FIG. 26. A schematic representation of theT→NT transition.
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2. T\„NT¿2…* transition

If, for a T phase characterized by theT7 order parameter,
Q2 ~or equivalentlyB1) orders beforeQ1 or the p12Q3
combination, the transition from theT phase is to the spon
taneously chiral (NT12)* phase~Fig. 27!. If we focus on
them-l plane,T7 order displays biaxiality (mil j1mjl i), with
principal axes atp/4 relative to the biaxiality of theB1 order
characterized by (mimj2 l i l j ). SinceT7 andB1 are different
order parameters, a simple rotation to define a new bia
axis is impossible, and the result is that the reflection inva
ance in them-l plane is spontaneously lost asB1 develops.
The lack of reflection symmetry is the characteristic feat
of the chiral (NT12)* phase, discussed in Sec. V D 2.
analogy to the development of biaxial order from the isot
pic phase, onceB1 orders, theQ1Q2

2 coupling in f Q3 drives
the development ofS ~or Q1) order. Thus, the (NT12)*
phase has nonvanishingS, B1, andT7 ~or equivalentlyS, B2,
andT6) order. Although theT→(NT12)* transition is con-
tinuous within mean-field theory, based on the experie
with the development of uniaxial and biaxial orders from t
isotropic phase, we expect that here too, theT→NT transi-
tion will always preempt theT→(NT12)* transition.

Within second-order mean-field theory,B1;uDTu1/2, S
;B1

2;uDTu, andJ i jk;T7B1S;uDTu3/2. Since theT phase
has elastic energies resisting spatial variations of then, m,
andl directions, the wave number of the cholesteric struct
of the cholesteric (NT12)* phase will scale asq0;uDTu3/2

in mean-field theory.

3. T\V¿3 transition

The ordering of linear combinations of (p1 ,Q4),
(p2 ,Q3), and (p3 ,Q5), which we will refer to asp2Q or-
dering, leads to theV13 phase~Fig. 28!. This can be seen
by observing that the third order potentialf p3,T in Eq. ~5.51!
favorsp156p256p3 with relative signs determined by th
sign ofwpTT7. Examination of Eq.~5.51! shows that similar
considerations apply toQ3 , Q4, andQ5. Thus, the vectorp

FIG. 27. A schematic representation of theT→(NT12)* tran-
sition.

FIG. 28. A schematic representation of theT→V13 transition.
4-21
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will align along the (1,1,1) or a symmetry equivalent axe
i.e., along a threefold axis of the tetrahedron characteriz
theT phase. Thus, to discuss the phase transition signale
the onset ofp-Q order, it is useful to transform to a new
coordinate system withn8 along the (1,1,1) axis, which is
most easily achieved by a rotation about the (1,21,0) axis.
Under this rotation we find that our basis transforms acco
ing to

m5 1
2 S 11

1

A3
D m82 1

2 S 12
1

A3
D l82

1

A3
n8, ~5.52a!

l52 1
2 S 12

1

A3
D m81 1

2 S 11
1

A3
D l82

1

A3
n8,

~5.52b!

n5
1

A3
~m81 l81n8!. ~5.52c!

Straightforward algebraic manipulations then yield

I 7
i jk5

A5

3
I 81

i jk2
A2

3
~ I 82

i jk1I 83
i jk !, ~5.53!

so that in the rotated coordinate system,

T185
A5

3
T7 , ~5.54a!

T2852
A2

3
T7 , ~5.54b!

T3852
A2

3
T7 . ~5.54c!

In this rotated basis the polar order is described byp
5p38n8, also inducing the nematic orderS8 through thef pQ

coupling. Thus, the phase produced by suchp-Q ordering
from theT phase has nonvanishingp38 , S8, T18 , T28 , andT38
order, which describes polar order along then8 axis and
triaxial order in them8- l8 plane perpendicular to it; a rota
tion by p/12 about the (1,1,1) axis can be used to removeT38
component of the triaxial order. Thus, the phase produced
p-Q ordering inside the tetrahedraticT phase is indeed the
previously discussedV13 phase.

G. Transitions from the NT phase

The NT phase is characterized by nonvanishing nem
order parameter,S, and an arbitrary linear combination of th
tetrahedratic order parameters,T6 andT7, which we collec-
tively call TW 6,7. These define the directions of the orthono
mal triad (m,l,n), which we can for convenience alway
pick to haveT6 vanish, with the tetrahedratic order com
pletely characterized by the value ofT7.
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The free energyf̃ (NT) describingharmonicfluctuations in
theNT phase can be expressed as a sum of three indepen
parts,

f̃ (NT)5 f̃ B1

(NT)
1 f̃ p3 ,B2 ,T1

(NT)
1 f̃ p1,2,Q3,4,T2,3,T4,5

(NT) , ~5.55!

where

f̃ B1

(NT)
5 1

2 r̃ B1

(NT)B1
2 ,

f̃ p3,T1,B2

(NT)
5 1

2 r̃ p3

(N)p3
21 1

2 r̃ B2

(NT)B2
21 1

2 r̃ T1

(NT)T1
2

1ãp3 ,B2

(NT) p3B21ãp1 ,T3

(N) p3T11ãB2 ,T1

(NT) B2T1 ,

f̃ p1,2,Q3,4,T2 ,3,T4,5

(NT)
5 1

2 r̃ p1,2

(N) ~p1
21p2

2!1 1
2 r̃ Q3,4

(NT)
~Q3

21Q4
2!

1 1
2 r̃ T2,3

(NT)
~T2

21T3
2!1 1

2 r̃ T4,5

(NT)
~T4

21T5
2!

1ãp1,2,Q3,4

(NT)
~p1Q41p2Q3!

1ãp1,2,T4,5

(N) ~p1T41p2T5!

1ã
B

28 ,T
18

(NT) FQ3S 1

A3
T32

1

A5
T5D

1Q4S 1

A3
T22

1

A5
T4D G ,

1ãQ3,4,T4,5

(NT)
~Q3T51Q4T4!

1ãT2,3,T4,5

(NT)
~T2T41T3T5!, ~5.56!

with

r̃ B1

(NT)
5 r̃ B1,2

(N) 2 2
3 ~2w12w3!T7

2 ,

r̃ B2

(NT)
5 r̃ B1,2

(N) 2 2
3 ~2w112w21w3!T7

2 ,

r̃ T1

(NT)
5 r̃ T1

(N)1~4uT2 2
5 vT!T7

2 ,

ãp3 ,B2

(NT)
52A2

3
wpQTT7 ,

ãB2 ,T1

(NT)
5

4

A15
wQTT72

4

3A15
~2w113w22w3!ST7 ,

r̃ Q3,4

(NT)
52r Q1 8

3 uQS22 1
3 ~2w112w21w3!T7

2 ,

r̃ T2,3

(NT)
5 r̃ T2,3

(N) 14uTT7
2 ,

r̃ T4,5

(NT)
5 r̃ T4,5

(N) 1~4uT1 4
15 vT!T7

2 ,
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ãp1,2,Q3,4

(NT)
52

1

A3
wpQTT7 ,

ã
B

28 ,T
18

(NT)
5wQTT71 1

3 ~w122w3!ST7 ,

ãQ3,4,T4,5

(NT)
52

4

3A5
w2ST7 ,

ãT2,3,T4,5

(NT)
5

2

A15
vTT7

2 . ~5.57!

As can be seen from the structure off̃ (NT) above, there are
three possible symmetry-reducing transitions that can t
place out of theNT phase. In contrast to the nematic pha
with D`h symmetry in which fluctuations in the biaxial field
B1 and B2 are degenerate, theNT phase with nonvanishing
TW 6,7 order breaks the degeneracy of fluctuations inB1 and
B2. For our choice ofm-l axes, withT650, the tetrahedratic
order parameterT7 couples the biaxial order parameterB2 to
the vector order alongn, described byp3 and its third har-
monicT1. Hence two~of the three! transitions are the order
ing of B1, and the ordering of a linear combination ofp3 ,
B2, andT1. A third possible transition out of theNT phase is
the development of vector ordertransverseto nematic axisn
described by an arbitrary linear combination ofp1 andp2. In
the NT phase with nonzeroT7, harmonic fluctuations inp1
are coupled to those ofQ4 andT4, and harmonic fluctuations
in p2 are coupled to those ofQ3 and T5. As a result, the
development of transverse vector order from theNT phase is
accompanied by a specific linear combination of the
higher-order order parameters.

Which of these three transitions takes place first is de
mined by minimum determinant in the setSNT

5$DB1
,Dp3 ,B2 ,T1

(NT) ,Dp1,2,Q3,4,T2,3,T4,5

(NT)
% of determinants of the

harmonic coefficients, that can be read off fromf̃ (NT) above.

1. NT\„NT¿2…* transition

FIG. 29. A schematic representation of theNT→(NT12)* tran-
sition.
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Development of biaxial order,B1, in the presence ofT7
~with T650) andSorder is quite similar to the developmen
of T7 order in the presence ofB1 order, discussed in Sec
V D 2, and corresponds to spontaneous chiral symme
breaking of theNT→(NT12)* transition~Fig. 29!. As can
be seen from the structure off̃ (NT), no other order parameter
are induced at this transition and, as discussed above
resulting (NT12)* phase is characterized by nonzeroS, B1,
andT7 order parameters. Because it is the underlyingB1→
2B1 , Z2 symmetry of theNT phase, that is broken whe
B1 orders, theNT→(NT12)* transition is in the Ising uni-
versality class if the linear gradient coupling proportional
J i jk is ignored. The latter term, aside from potentially mod
fying the critical properties of this transition, leads to a pit
wave number in the cholesteric (NT12)* phase that scale
in mean-field theory asq0;B1;uDTu1/2 just below theNT
→(NT12)* transition.

2. NT\V¿2 transition

TheNT→V12 transition takes place via the developme
of vector orderp5p3n along the nematically orderedn axis.
Since in the presence ofT7 and S such longitudinal vector
order is coupled toB2 andT1, theNT→V12 is also accom-
panied by the development ofB2 and theT1 order parameter.
Because the free energy of theNT phase is invariant unde
n→2n, the development ofp3 longitudinal order can be o
either sign and the transition is in the Ising universality cla
~Fig. 30!.

3. NT\N¿V transition

A third possible transition out of theNT phase takes place
when transversevector orderpW 1,2 develops. As can be see
from the form off̃ p1,2,Q3,4,T2,3,T4,5

(NT) , the development ofpW 1,2 is

accompanied by biaxial orderQW 3,4 and a linear combination
of TW 2,3 andTW 4,5 order parameters. The resulting phase ha
C1h symmetry, and we therefore identify it with the prev
ously discussedN1V phase. At the harmonic level, the fre
energy appears to be O(2) invariant, with respect to rota
of pW 1,2. However, in the presence ofT7, nonlinearities in
pW 1,2, break this rotational invariance. A lowest order su
symmetry breaking nonlinearity is given by

FIG. 30. A schematic representation of theNT→V12 transi-
tion.
4-23
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f symm. breaking
NT 5Qi 1 ,i 2Ti 1 , j 1 ,k1Ti 2 , j 2 ,k2pj 1pk1pj 2pk2,

5 4
9 ST7

2p1
2p2

2 . ~5.58!

It introduces into the O(2) symmetry harmonic free ene
of pW 1,2 a well-studied cubic symmetry breaking anisotrop
Based on these studies@32#, we therefore expect theNT
→N1V transition to be driven first order by thermal flu
tuations@33#.

H. Transitions from the V¿2 phase

As can be seen from the flow-chart, Fig. 7, the biax
vector V12 phase, characterized, for example, by fin
p3 , S, B1 , T1 , T6 order parameters and byC2v
symmetry, can further lower its symmetry in two ways. It c
undergo a transition to theN1V phase via the developmen
of polar order, characterized bypW 1,2, QW 3,4, andTW 4,5, order
parameters along one of the biaxial axis perpendicular to
V(p3) order. Alternatively, it can undergo a transition to t
(VT12)* phase via the development ofT7 order. Both the
V12→N1V and theV12→(VT12)* are expected to be
in the Ising universality class because in both cases it isZ2
symmetry that is being broken.

I. V¿3\N¿V transition

The threefold symmetry in the plane transverse to the v
tor (p3) axis of theV13 phase can be spontaneously brok
with, e.g., biaxial order in this plane driving the transitio
and other parameters~listed in Table I! also condensing. We
therefore expect theV13→N1V transition to be in the
three-state Potts model universality class.

J. „NT¿2…*\„VT¿2…* transition

The final transition that we will comment on is polar o
dering transition from the nonpolarNT12* phase. Because
of the present nematic order inNT12* state, polar order
breaksZ2 symmetry and we expect (NT12)* →(VT12)*
transition to be in the Ising universality class~Fig. 31!.

FIG. 31. A schematic representation of the (NT12)*
→(VT12)* transition.
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VI. NEW SMECTIC PHASES

Our primary interest in this paper has been in fluid~spa-
tially homogeneous! but anisotropic liquid-crystalline phase
of bent-core molecules, particularly in phases with exo
symmetries not encountered in systems of rodlike or pla
like mesogens. Our work, however, suggests the possib
of smectic or layered analogs of these exotic fluid phases
these putative phases, which we will explore in more de
in a separate publication@17# the smectic layer normalN
provides an additional direction that may or may not co
cide with a symmetry direction of the fluid phase. Most
the banana-shaped smectic phases classified to date are
uponV12 order embedded in smectic layers either in ide
tical configurations~as in the SmCSPF phase in the notation
@4# of Ref. @3#! in neighboring layers or in alternating con
figurations~as in the SmCAPA phase! in neighboring layers.
Each layer is then characterized by the molecular directi
n, m, and l and byN. Though theV12 fluid phase is not
chiral, each layer of smectic phases derived from it can
chiral if, for example,m lies in the smectic layer andn is
tilted relative to N as is the case in the globally chira
SmCAPA and SmCSPF phases, and in the SmCSPA and
SmCAPF phases where chirality alternates in adjacent lay
@4#.

New types of smectics can arise from layering ofNT ,
(NT12)* , and (VT12)* fluid phases. In the simplest o

FIG. 32. A schematic representation of smectic phases~a!
SmANT

, ~b! SmAuu* (NT12), ~c! SmA'
* (NT12).
4-24



ha
n-

b

en

s

y
es
lly
th

n-
as
o

pa
a
p

ly

us

0

ad
e

o-
pi
e
ili
t

l
pa
n-

se,

ld

are
ince
try,
r-
lity
iral
em

a
ns

ng

tic
s,

n a
s-
th
es

use

les,
id-
si-
ous

ally

a-
irect
ests
rich
tud-
here
for
red

nce
of
by
ns,
of
as
1.
us

THEORY OF BENT-CORE LIQUID-CRYSTAL PHASES . . . PHYSICAL REVIEW E 66, 031704 ~2002!
these phases, which we label SmANT
and depict in Fig.

32~a!, each layer hasNT symmetry withn parallel toN and
m along a common direction in each layer. This phase
D2d point group symmetry. Many variants of it are imagi
able. For example, them axis could rotate byp/2 from layer
to layer, or then axis could tilt relative toN to produce a
SmC* (NT) phase, which like the SmC* phase would be
chiral. Layered phases formed from the (NT12)* fluid
phase are chiral. In one such phase, the SmAuu* (NT12)
phase, a layer of which is depicted in Fig. 32~b!, then axis is
parallel to N, and the biaxialm axis rotates from layer to
layer like thec director in the SmC* phase. If the pitch of
the twist structure is very long, this phase would appear to
a biaxial smectic. The recently identified biaxial SmA phase
@37# in mixtures of banana-shaped and rodlike mesog
may correspond to the very long-pitch SmAuu* (NT12)
phase. An alternative version of a smectic (NT12)* phase,
the SmA'

* (NT12) phase hasn in the plane of the layers a
depicted for a single layer in Fig. 32~c!. Since this phase is
chiral,n will rotate in a helical fashion from layer to layer. A
more complex (NT12) smectic-C like phase, withn making
an angle other than 0 orp/2 with respect toN is also pos-
sible.

VII. SUMMARY AND CONCLUSIONS

In this paper, we have presented a comprehensive stud
liquid phases of achiral bent-core liquid-crystal molecul
Using symmetry we enumerated all possible orientationa
ordered liquid phases, classified them by subgroups of
rotation group O~3! under which they are invariant, and co
structed Landau mean-field theory describing these ph
and transitions between them. One primary conclusion of
work is that in addition to the vector (pi) and second-rank
nematic (Qi j ) order parameters, a third-rank tensor order
rameterTi jk , representing third-mass moment, is necess
to characterize the liquid-crystal phases of banana-sha
molecules, such as, for example, theNT phase withD2d
symmetry, the tetrahedraticT phase, and the spontaneous
chiral nematic (NT12)* and its chiral polar analog (VT
12)* . In these phases the chiral symmetry is spontaneo
broken by ‘‘condensation’’ of the biaxialBW 1,2 and tetrahe-
dratic TW 6,7 order parameters with a nonvanishing angle
,d,p/2 between their respective principal axesm-l @see
Fig. 6~b!#.

The NT phase is neither uniaxial nor biaxial but inste
exhibits an invariance with respect to a fourfold improp
rotation consisting of a rotation throughp/2 about thez-axis
followed by an reflectionz→2z. The T phase is invariant
under theTd symmetry group of a tetrahedron. Like the is
tropic phase, its second-rank dielectric tensor is isotro
making it optically isotropic, but unlike the isotropic phas
it has a nonvanishing second-order nonlinear susceptib
x i jk

(2);Ti jk such that there is a second-order contribution
the polarizationPi

(2)5x i jk
(2)EjEk whereEi is the electric field.

The chiral nematic (NT12)* phase, like the traditiona
chiral cholesteric and blue phases, will exhibit periodic s
tial modulations of the direction of molecular alignment. U
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like the transition from the isotropic to the cholesteric pha
the transitions to the (NT12)* phase~from the biaxialN
12 phase, the tetrahedraticT phase, and theNT phase with
D2d symmetry! are second order, at least in mean-fie
theory. The pitch of the cholesteric structure of the (NT
12)* phase diverges as these second-order transitions
approached and thus changes rapidly with temperature. S
the (NT12)* phase spontaneously breaks chiral symme
the state initially formed upon cooling from the highe
symmetry phase will consist of domains of opposite chira
separated by domain wall that will coarsen over time. Ch
dopants~or distortions of bent-core mesogens to make th
chiral! render all phases chiral and, in particular, induce
cholesteric pitch of a particular sign on the chiral extensio
(N12)* , T* , and NT* , of the (N12), T, and NT phases.
Thus chiral dopants act like an external field in an Isi
ferromagnet, favoring a particular sign of chirality~rather
than a particular sign of spin!, and the transitions from the
(N12)* , T* , andNT* phases to the (NT12)* phase will be
analogous to the Ising transition in an external magne
field. In principle, for sufficiently large chirality, blue phase
with two orthogonal twist axes can also appear in (NT
12)* . In addition to these properties of the nonpolar (NT
12)* phase, the chiralpolar (VT12)* phase will exhibit
spontaneous ferroelectricity, a liquid state that has bee
holy grail in liquid-crystal research dating back to Louis Pa
teur. Light scattering, circular dichroism, and switching wi
a weak electric field would be natural experimental prob
for these spontaneously chiral states.

These chiral phases are particularly interesting beca
their smectic analogs, the chiral SmCAPA , SmCSPA ,
SmCAPF , and SmCSPF ~the four B2 phases! @3,4,7# have
been realized in banana-shaped liquid-crystal molecu
generating significant excitement in the ferroelectric liqu
crystal community. Our work suggests that smectic po
tional order is not necessary and that spatially homogene
spontaneously chiral liquid-crystal phases are generic
possible.

Although, most @16# experimental systems of banan
shaped molecules studied so far, appear to undergo d
first-order transitions into smectic phases, our work sugg
that this situation does not have to be the case, and a
phase structure and hierarchy of continuous transitions s
ied here is possible. We hope that the results presented
will stimulate searches in experiments and simulations
banana-shaped materials that exhibit orientationally-orde
liquid phases predicted here.
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